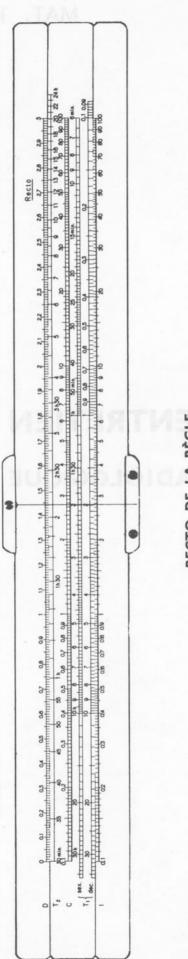
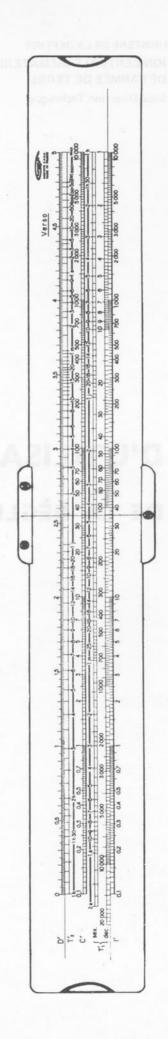
MINISTERE DE LA DEFENSE


DI RECTION CENTRALE DU MATERIEL

DE l'ARMEE DE TERRE

Sous-Direction Technique


NOTICE

D'UTILISATION ET D'ENTRETIEN
DE LA RÈGLE A CALCUL RADIOLOGIQUE

RECTO DE LA RÈGLE

.

VERSO DE LA RÈGLE

I. BUT

Cette règle a pour but de permettre à l'officier « Armes spéciales » d'une unité de résoudre rapidement les problèmes suivants :

Connaissant l'intensité d'irradiation à un instant donné après l'explosion d'un engin nucléaire,

déterminer :

1º L'intensité d'irradiation à un instant quelconque;

2º La dose reçue par un individu entrant dans une zone contaminée au temps t₁ et en sortant au temps t₂;

 $\tilde{3}^{\circ}$ Le temps de séjour dans une zone contaminée d'un individu y entrant au temps t_1 et ne devant pas

recevoir une dose supérieure à une certaine valeur;

4° L'époque d'entrée dans une zone contaminée d'un individu qui doit y séjourner un temps donné

et ne pas recevoir une dose supérieure à une certaine valeur.

L'emploi de cette règle suppose que la mesure de l'intensité d'irradiation qui sert de base aux calculs a été faite une fois la **retombée terminée.** La règle ne permet pas d'effectuer les calculs dans le cas d'un individu entrant dans la zone contaminée pendant la retombée.

II. DESCRIPTION DE LA RÈGLE

RECTO. - La règle comporte les échelles suivantes :

1º Échelle I : Échelle des intensités en graduation logarithmique de 0,1 à 100 r/h.

2° Échelle T₁: Échelle des temps en graduation logarithmique de 0,09 à 30 heures. Le module de l'échelle des temps est 1,2 fois celui de l'échelle des intensités puisque la loi de décroissance radioactive est :

$$I = I_0 t^{-1.2}$$

Ces deux échelles permettent de lire l'intensité à un instant quelconque connaissant l'intensité à un instant donné.

 3° Échelle D : Cette échelle est une échelle linéaire graduée de 0 à 3 donnant le coefficient par lequel il faut multiplier l'intensité à l'instant t_0 (origine des temps arbitraire) pour obtenir la dose reçue.

4° Échelle T2: Échelle des temps graduée de 30 minutes à 24 heures. La graduation de cette

échelle est basée sur la formule :

$$\frac{D}{I_0} = \int_{t_1}^{t_2} t^{-1.2} dt,$$

D : dose accumulée entre l'instant t_1 et l'instant t_2 .

 I_0 : intensité à l'instant t_0 , t_0 étant arbitrairement choisi égal à 1 heure après l'explosion.

Cette formule, permet de faire correspondre à chaque valeur de $\frac{D}{I_0}$, c'est-à-dire à chaque graduation de l'échelle D, une valeur de t, c'est-à-dire une graduation de l'échelle T_2 .

Les échelles D et T_2 permettent donc de déterminer par simple lecture directe le coefficient par lequel il convient de multiplier l'intensité à l'instant t_0 pour obtenir la dose accumulée entre deux instants t_1 et t_2 .

5° Échelle C: L'échelle C est une échelle de calcul dont les graduations sont identiques à celles de l'échelle 1. Elle permet d'effectuer les multiplications ou les divisions nécessaires pour déterminer les doses ou les temps de séjour demandés.

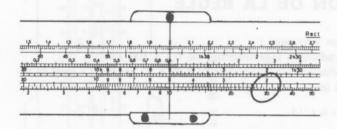
VERSO. — Les échelles I', T'₁, D', T'₂, C' ont la même contexture et le même objet que leurs homologues du recto. Leur module est différent pour permettre des calculs se rapportant à des durées de séjour très importantes. La précision est évidemment beaucoup moins bonne.

III. ENTRETIEN

Après usage, remettre la règle dans son étui.

Éviter de la laisser séjourner longtemps au soleil d'été.

Éviter les contacts avec des engins ayant une température supérieure à 55 °C.


Si votre règle est maculée, la nettoyer avec un chiffon doux (coton) imbibé d'eau et enduit de savon de Marseille.

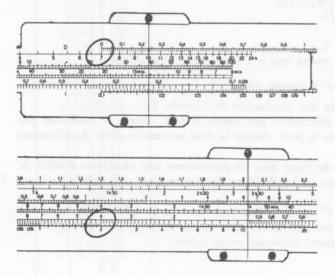
Ne jamais employer de solvants : acétone, trichloréthylène, etc.

IV. EXEMPLES

Problème I. - Intensité à un instant donné.

L'intensité, en un point, mesurée 2 heures après l'explosion est de 30 r/h. Quelle sera l'intensité 5 heures après l'explosion?

Utiliser le recto de la règle.

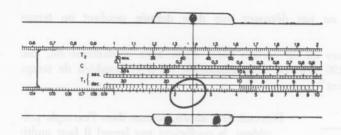

Mettre le chiffre 30 de l'échelle I en face du chiffre 2 de l'échelle T₁.

On lit alors en face du chiffre 5 de l'échelle T₁, le chiffre 10 de l'échelle I.

Réponse: 10 r/h

Problème II. — Calcul d'une dose accumulée pendant un temps donné.

L'intensité, en un point, mesurée 4 heures après l'explosion est de 2 r/h. Quelle est la dose accumulée par un individu déposé en ce point 7 heures après l'explosion et ramassé 10 heures après l'explosion?

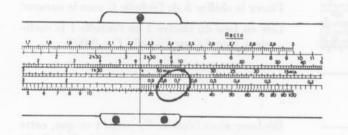


Placer le 7 de l'échelle T₂ en face du 0 de l'échelle D.

On lit sur l'échelle D en face du 10 de l'échelle T₂ la graduation 0,234. C'est le coefficient par lequel il convient de multiplier l'intensité régnant 1 heure après l'explosion pour obtenir la dose recherchée.

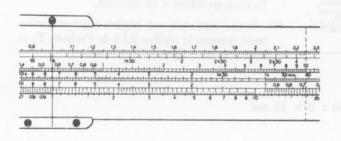
Mettre le 4 de l'échelle T₁, en face du 2 de l'échelle I.

Placer le curseur sur le 1 de l'échelle T₁ et ne plus y toucher.

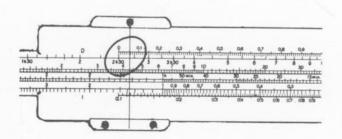


Toujours sans bouger le curseur, amener sous le trait rouge de ce dernier, le 1 de l'échelle C et lire en face de la graduation 0,234 de l'échelle C la yaleur cherchée sur l'échelle I.

Réponse: 2,48 r


Problème III. -- Durée de séjour pour une dose permise.

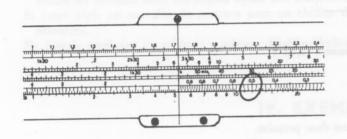
L'intensité mesurée en un point trois quarts d'heure après l'explosion est de 250 r/h. Une équipe se rend en ce point 2 h 1/2 après l'explosion. Combien de temps peut-elle y rester, la dose admissible ayant été fixée à 10 r?



Mettre le chiffre 0,75 de l'échelle T₁ en face du chiffre 25 de l'échelle I.

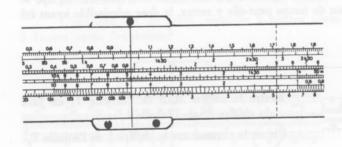
Placer le curseur sur le chiffre 1 de l'échelle T1.

Déterminer le coefficient par lequel il convient de multiplier l'intensité régnant 1 heure après l'explosion pour obtenir une dose de 10 r de la manière suivante : placer sous le curseur le chiffre 10 de l'échelle C. Lire alors sur l'échelle C en face du chiffre 1 de l'échelle I, le chiffre 0 56; compte tenu du fait que l'on a pris 25 r/h au lieu de 250 r/h, le coefficient cherché est 0,056.

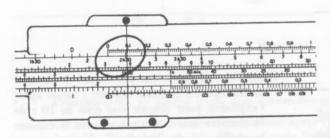


Placer alors le chiffre 2 h 30 mn de l'échelle T₂ en face du 0 de l'échelle D. Lire sur l'échelle T₂ en face du chiffre 0,056 de l'échelle D la valeur cherchée, soit 2 h 40 mn.

Réponse: 10 mn


Problème IV. — Heure d'entrée pour ne pas dépasser une dose donnée pendant un temps donné.

Une équipe doit séjourner un quart d'heure en un certain point d'une zone contaminée où, une demi-heure après l'explosion, l'intensité était de 120 r/h. La dose admissible est 5 r. Combien de temps après l'explosion pourra-t-elle se rendre en ce point?



Déterminer d'abord, comme dans l'exemple précédent, le coefficient par lequel il faut multiplier l'intensité régnant 1 heure après l'explosion pour obtenir la dose 5 r de la manière suivante:

Placer le chiffre 0,5 de l'échelle T₁ en face du chiffre 12 de l'échelle I, et le curseur sur le chiffre 1 de l'échelle T₁.

Placer le chiffre 5 de l'échelle C sous le curseur. Lire en face du chiffre 1 de l'échelle I le coefficient cherché sur l'échelle C : 0,097.

Déplacer alors l'échelle T₂ jusqu'à ce que, entre le chiffre 0 et le chiffre 0,097 de l'échelle D, il y ait un nombre de graduations de l'échelle T₂ correspondant à 15 minutes.

On trouve que cela est réalisé approximativement lorsque le chiffre 2,15 de l'échelle T₂ se trouve en face du zéro de l'échelle D.

Réponse: 2 h 15 mn