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1 Introduction

From the nineteenth century up to the 70’s, slide rules have been the precious auxiliaries
of engineers, architects and technicians worldwide.

Since then, they have been outdated by electronic pocket calculators. Slide rules
allow one to quickly perform a lot of numerical computations, such as multiplying,
dividing, computing squares, cubes, extracting square andcube roots, trigonometry,
etc.

Figure 1:Graphoplex slide rule, “Polyphase” type.

In this article, we are going to study in details the principles of a classical slide
rule (“Mannheim” or “Polyphase” and derivatives), throughthe analysis of the under-
lying mathematical relations and several numerical examples. An high-school level in
mathematics should be sufficient enough to read this article.

2 Mathematical principles

All sliding rules are based upon the usage of logarithms. Thelogarithm is a quite handy
mathematical function which allows us to transform a multiplication into an addition:

log(a × b) = log(a) + log(b)

The logarithm of theproduct is thesum of the logarithms. That way we transform
a multiplication, which is quite complex to perform, into anaddition, which is much
easier. The adding of two values is easy to achieve by the juxtaposition of two physical
lengths: to multiplya andb, we add their logarithms. The valuec which logarithm is
equal to this sum is then equal to the product ofa by b.

Following the same idea, we use the equation below to divide two numbers:

log(a/b) = log(a) − log(b)
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A division is tranformed into a substraction.
The same principle is used for manual computation, but by using numerical loga-

rithmic tables.

3 Multiplying

3.1 Principle

Below is a logarithmic scale, on which each graduationa is located at a length of
la = log(a) from the origin1 (figure 2).

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9

a

la = log(a)

Figure 2: Logarithmic scale.

This logarithmic scale has the noteworthy property that if you translate a cursor
on this scale by some lengthk starting from any numbera, you will find this number
multiplied byk′ (k = log(k′)) (figure 3).

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9

a1

k

a1 × k′ a2

k

a2 × k′

Figure 3: Adding a distance to multiply.

In order to multiply two numbersa andb, we use two logarithmic scales C and D.
The lengthla on D between the graduation1 and the graduation corresponding to the
numbera is la = log(a). In the same way, the graduation ofb on the C scale will give
us the lengthlb = log(b). Thus the lengthlc = la + lb is the logarithm ofc = a × b.

More precisely, we place the two scales C and D side by side, and by translating C
of a lengthla we align the base of scale C (the1) with the graduation ofa on scale D.
Then, we report lengthlb afterla (starting from scale C base) up to theb graduation on
scale C. The lengthlc from the base of scale D to this graduation, islc = la + lb. We
can then directly read on scale D the producta × b (figure 4).

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D

1 2 3 41,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9C

ala

b

lb

lc = la + lb

a × b

Figure 4: Multiplyinga by b.
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3.2 C and D?

Nowadays, slide rules are following the first model setup by Amédée Mannheim, a
French artillery officer under Napoléon, who labelled the four scales of his rule by the
first four letters of the alphabet: A, B, C and D (figure 5). The two logarithmic scales,
being situated below, are thus using the C and D letters. Scales B and C slides on a rule
relatively to A and D. (We will further see the usage of scalesA and B.) The custom
has been kept to label the two main logarithmic scales C and D,even if sometimes
other symbols are used (notably in France!)

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9C
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90100B

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90100A A

Figure 5: Location of A, B, C and D scales.

3.3 Example

For instance, we will multiply3.1 by 1.7 (figure 6). We translate scale C to place its
base (graduation1) aligned with graduation3.1 on D. Then, we align the cursor (also
known as “hairline”) on the1.7 graduation on C. The product can be directly read on
D, it’s 5.27.

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D

1 2 31,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9C

3.1

1.7

3.1 × 1.7 = 5.27

Figure 6: Multiplying3.1 by 1.7.

3.4 Out of range product

Sometimes the product of two numbers in the range[1..10] overflows10. The loga-
rithmic scale being graduated only up to10, how can we proceed? In that case, we do
not compute directly the producta × b, buta × b/10 instead, which is in the interval
[1..10]. Dividing b by 10 is the same as translating everything to the left of a length of
l10 (length corresponding to the distance between graduations1 and10). It’s a property
from the logarithms:log(b/10) = log(b) − log(10) = log(b) − 1.

Technically, this is the same as aligning, not the1 of scale D, but the opposite
extremity (the10), with the graduation corresponding toa on scale C. The product
(divided by10) can be read in front of theb graduation on scale D (figure 7).
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1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D

2 3 4 5 6 7 8 9 101,4 1,5 1,6 1,7 1,81,9 C

ala

b l10 − lblc = la − l10 + lb

a × b/10

Figure 7: Out of range product.

3.5 Mantissa and exponent

When a value is not in the interval[1..10], we work only with the mantissa part of the
number written in scientific notation, without taking into account the exponent part.

A property of the power function intervenes, which is to transform a product of
powers in a power of sum. Indeed,

xa × xb = xa+b

thus ifa = am×10ae andb = bm×10be, the product isa×b = am×bm×10ae+be . The
mantissa of the product is the product of the mantissas, calculation made with numbers
in the range[1..10], and the exponent of the product is the sum of the exponents. One
only need to adjust the exponent of the result to the desired notation (scientific or
engineering).

For example, to compute the product of1370 (1.37 × 103) by 0.121 (1.2 × 10−1),
we compute first1.37 × 1.2 ≈ 1.66. Then, adding exponents (3 + (−1) = 2) gives us
the exponent of the result, thus1.66 × 102, i.e. 166.

4 Divisions

4.1 First method

We use the same scales as for the multiplication, but in a different way. We want to
compute herec′ = a′/b′, which can be also written asc′ × b′ = a′. This is the same
as looking for the termc′ which, multiplied by a factorb′, givesa′. We use the same
method as for multiplying, usinga for a′/b′, b for b′, andc = a × b for a′.

We align theb′ graduation on scale C with thea′ graduation on scale D. The quo-
tient is read on scale D and corresponds to the base of scale C,i.e. the1 graduation.
(figure 8).

To the opposite of the multiplication process, where the product can overflow10,
here the quotient can underflow1. In that case, use the10 graduation to read the result,
and divide the quotient by10.

In order to compute the quotient3.95 by 830, align8.3 on scale C with3.95 from
scale D. The result is less than1, so we need to read it on scale D, below10 from
scale C, which gives0.475. Adjusting exponents by a method identical to the one of
multiplication, we obtain3.95/830 ≈ 4.75.10−3 (figure 9).
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1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D

1 2 31,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9C

a′la′

b′lb′lc′ = la′ − lb′

a′/b′

Figure 8: Division, first method.

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D

2 3 4 5 6 7 8 9 101,9 C

3.95

8.3

3.95/8.3 ≈ 4.75/10

Figure 9: Dividing3.95 by 830.

4.2 Second method

We use here a second scale CI, inverted from C (CI≡ C Inverted, in red on figure 10).
The base of scale CI (graduation1 on the right hand-side) should be aligned here with
the graduation on scale D of dividenda′. Going back to the left (that is, by substracting
from la the lengthlb), the graduation on scale D aligned withb′ on scale CI gives
directly the resultc′ = a′/b′.

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D

1234567 1,11,21,31,41,51,61,71,81,9 CI

a′la′

b′ lb′lc′ = la′ − lb′

a′/b′

Figure 10: Dividing, second method.

If the result of the division is not in the interval[1..10], align the left base (gradua-
tion 10) of CI, compute the quotient×10 and divide the result by10.

Figure 11 show the computation of2.14/7.65.

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D

2345678910 1CI

2.14

7.65

2.14/7.65 ≈ 2.80/10

Figure 11: Dividing2.14 by 7.65.

The main advantage of this method, apparently more complex because needing a
new type of scale (CI), is clearly revealed in the section 5.

4.3 Reciprocal

The use of the two scales C and CI allows the direct computation of the reciprocal1/a
of a numbera.
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Indeed,log(1/a) = − log(a), andlog(10× 1/a) = log(10)− log(a), from where:

log(10 × 1/a) = 1 − log(a)

Figure 12 explicits the computation.

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9C C

12345678910 1,11,21,31,41,51,61,71,81,9CI CI

a

10 × 1

a
1 − log(a) = log(10 × 1

a
)

log(a)

Figure 12: Computation of1/a.

As in multiplication, it is easy to compute the reciprocal ofa number outside the
interval [1..10], by writing the number in scientific notation and by using theformula
1/10b = 10−b.

5 Chaining multiplications and divisions

5.1 General method

To chain operations, like a quotient of products such as:

a1 × a2 × a3

b1 × b2

it is possible to compute the producta = a1 × a2× a3, keep the resulta, then compute
b = b1 × b2, keep the resultb, then finally dividec = a/b. But we need to keep two
intermediate results.

There is another method, way simpler, which prevents us of writing down any
intermediate results. If we use the second method to divide,the result of the division is
on the D scale, ready to be re-used for the next computation stage. Thus, by alternating
multiplications and divisions, we use the previous intermediate result as a base for the
next computation.

The method is the following:

• Computea1/b1,

• Multiply this result bya2,

• Divide by b2,

• Multiply then bya3, which gives us the final result.

The first operand of stagen + 1 is in all cases the result of stagen. There is no
intermediate result to keep.

For example we will compute

7.1 × 0.51 × 22800

0.25 × 61.5
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Only four moves of the rule are needed to obtain the result.
Compute7.1/0.25 ≈ 28.4 (figure 13).

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D

12345678 1,11,21,31,41,51,61,71,81,9 CI
2 3 4 5 6 7 8 9 101,3 1,4 1,5 1,6 1,7 1,81,9 C

7.1

0.25

7.1/0.25 ≈ 28.4

Figure 13: Chained computation, first step.

Align the 10 of the multiplication scale C on the result which was computed, that
is 28.4. Multiplying by 0.51 gives14.5 (figure 14).

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D

123 1,11,21,31,41,51,61,71,81,9 CI
4 5 6 7 8 9 10C

28.4

0.51

28.4 × 0.51 ≈ 14.5

Figure 14: Chained computation, second step.

Align the 10 of the division scale CI on the result. Dividing14.5 by 61.5 gives
0.236 (figure 15).

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D

2345678910 1,1,41,51,61,71,81,9CI
1 2 3 4 5 6 71,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9C

14.5

61.5

14.5/61.5 ≈ 0.236

Figure 15: Chained computation, third step.

Then, align the1 of the multiplication scale C on the result, and multiply by22800,
which gives us as a result5380 (figure 16).

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D

345678910CI
1 2 3 41,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9C

0.236

22800

0.236 × 22800 ≈ 5380

Figure 16: Chained computation, fourth and last step.

The exact result equals5369, 678.., which gives us an error of roughly0, 2%.
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5.2 Multiplying three factors

There is a quick method to multiply 3 factorsa × b × c, using only one slide rule
translation.

Using the CI inverted scale, we can multiply two numbersa andb by aligning them
on the CI and D scale. The producta × b is then on the D scale, aligned with the
base of CI scale (1). This intermediate product can then be easily reused as thefirst
operand of a classical multiplication with the C scale, using c as the second operand.
The graduation ofc on C shows us directly the producta × b × c on D (figure 17).

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D

1 2 3 4 5 61,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9C

2345678910 1,51,61,71,81,9CI

a

ba × b/10

c

a × b × c/10

l10 − lala + lb − l10

lb

lc

la + lb + lc − l10

Figure 17: Multiplying 3 factorsa × b × c.

6 Proportions & conversions

Proportion problems are encountered frequently, such as converting from one unit to
another (inch to millimeters, knots to km/h for example), orto apply a proportion rule
(how much weight3.73 litres of a product, when1.27 litre weight0.965 kg). These
computations are equivalent to the computation ofa1 with

a1

b1
=

a2

b2

knowinga2/b2 andb1. This proportion rule can be written asa1/a2 = b1/b2, that
is log(a1/a2) = log(b1/b2). Knowing thatlog(x/y) = log(x) − log(y), the last
equality can be rewritten aslog(a1) − log(a2) = log(b1) − log(b2). Let us pose
la = log(a1) − log(a2) andlb = log(b1) − log(b2). We can remark (figure 18) that
by aligning factorsa2 et b2 on respectively D and C scales,a1 will be directly read on
scale D aligned withb1 on C.

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D

1 2 3 4 51,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9C

a2

b2

a1

b1

la

lb

Figure 18: Proportions

In other words, the distance fromb1 to b2 on scale C is the same as the distance
from a1 to a2 on scale D. Once the scales setup, one can convert how many values he
wants, without modifying the sliding rule ratio.
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When converting out of range values, shift the C scale of a length l10 to the left,
to bring back the10 index in place of the1 index, without forgetting to adjust the
computed result of a factor10.

Figure 19 gives an example of converting with a ratio of1.74/2.44.

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D

1 2 3 4 5 6 7 81,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9C

1.74

2.44

2.64

2.64 × 2.44/1.74 ≈ 3.70

Figure 19:3.70 is to2.64 what2.44 is to1.74.

7 Squares & square roots

7.1 Squares

We use a scale, called A, graduated according to the logarithm of the square root. The
length from the originl of a graduationa is given by:

l = log(
√

a)

To compute the square of a numbera, we slide the cursor over the graduation fora
on the D scale. Theb value aligned on scale A equals to this square:b = a2. We have
la = lb, la = log(a) andlb = log(

√
b), solog(a) = log(

√
b), thusb = a2 (figure 20).

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90100A A

a

b = a2

la = log(a)

lb = log(
√

b)

Figure 20: Square computation.

In order to compute the square of a number out of the range[1..10], by writing this
number on scientific forma = am.10ae, we havea2 = a2

m.10ae2, or a2 = a2
m.102.ae.

The mantissa of the square is the square of the mantissa, the exponent of the square is
twice the exponent. See the example of0.3882 on figure 21.

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90100A A

0.388 = 3.88 × 10−1

0.3882 ≈ 15.05 × 10−2 = 0.1505

Figure 21: Square of0.388.
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7.2 Square roots

To extract the square root of a number, we could believe the opposite process would do
it. The problem being that scale A has two intervals, respectively [1..10] and[10..100].
Which one are we going to use to compute the square root of a number out of the range
[1..100]?

We have to write the numbera on which we want to compute the square, under the
form a = am.102.ae , with am in the interval[1..100] andae integer. The square ofa
equals to: √

a =
√

am.102.ae

thus √
a =

√
am.10ae

To compute the square root of778312, write 778312 = 77.8312 × 104, compute√
77.8 ≈ 8.82, we obtain then

√
778312 ≈ 8.82 × 102 = 882.

8 Cubes and cube roots

The method is based on the same principle as computing squares and square roots. The
scale used here, called K, is graduated upon:

l = log( 3
√

a)

To compute the cube root, write the numbera on which we want to compute the
root under the forma = am.103.ae, with am in the interval[1..1000] andae integer.
The remaining of the procedure is straightforward.

9 Usual calculations

9.1 Converting degree/minute

We found, on the C and D scale of most slide rules, some constants: ρ′, ρ′′ et ρ′′

(figure 22). This constants allows, by aligning the base of a scale on one of them,
to transform angles expressed using the DMS system (Degree,Minute, Second) onto
angle in radian (arc length), or the reverse.

• ρ′ = 360×60
2π ≈ 3437, 747, converting an angle in minutes,

• ρ′′ = 60 × ρ′ ≈ 206265, converting an angle in sexagesimal seconds,

• ρ′′ = 100 × ρ′ ≈ 636619, converting an angle in decimal seconds.
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1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D

ρ′ρ′′ ρ′′C

Figure 22: Usual conversion constants.

9.2 Volume of a cylinder

The constant

C =

√

4

π
≈ 1, 128379

allows the calculation of the volumeV of a cylinder of diameterd and heighth:

V =
πd2

4
× h

This equation can also be written under the form:

√
V =

d

C
×
√

h

Align the mark of the constantC on scale C withd on scale D. Slide the cursor onh on
scale B, the volumV can then be directly read on scale A. Figure 23 visually explains
the computation.

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D

1 2 3 4 5 61,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9C

1 2 3 4 5 6 7 8 9 10 20 30 40B

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90100A A

C

dlog(d)

log(d/C) log(
√

h)

log(d/C.
√

h) = log(
√

V )

h

V

Figure 23: Cylinder’s volume.

9.3 π-Shifted scales

On some slide rules we found scales CF, DF, even CIF. Theses scale are identical to
respectively C, D and CI, but shifted by aπ factor, on the right by a lengthlπ =
log(π) ≈ 0.497. With theses scale one can perform all classical computations, but
multiplied/divided with aπ factor. For example, to computeπ × 2.3 × 1.7, place the
origin of scale C aligned to2.3 on D, then read the result on DF:12.28.

Without using the shifted scales, we can use theπ constant on scales A, B, C and
D to easily perform theses computations. The 3-factor multiplication method (§5.2)
could be used in that case.

12



10 Trigonometry

Scale S (figure 24), graduated according to the lawl = log(10. sin(α)), allows the
computation of the sine of an angle from5.74◦ to 90◦ (sin(5.74◦) ≈ 0.1, sin(90◦) = 1,
that is, the interval of the C logarithmic scale divided by10).

To compute the sine of an angle, directly read on the logarithmic scale the result
and divide it by10. To compute the angle for which the sine is known, proceed in the
same manner but interverting the two scales.

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9C C

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 45 50 60 70 80S S

10. sin(α)

αlog(10. sin(α))

Figure 24: Sine scale from5.7◦ to 90◦.

The computation of the tangent and its inverse is made using the same principle on
a scale T, graduated upon the lawl = log(10. tan(α)) (figure 25).

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9C C

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 45T T

10. tan(α)

αlog(10. tan(α))

Figure 25: Tangent scale from5.7◦ to 45◦.

To compute the sine or the tangent of an angle in the range0.573◦ and5.7◦ (sin(0.573◦) ≈
tan(0.573◦) ≈ 0.01), we use in both cases a unique scale called ST (figure 26), grad-
uated according to the lawl = log(100.(sin(α) + tan(α))/2). We can use one rule
for both because for small angles, sine and tangent are nearly the same. The error,ǫ,
between the sine and the tangent for a given angleα, is:

ǫ = 2.
tan(α) − sin(α)

tan(α) + sin(α)

which gives0.496% for α = 5.7◦; and only0.005% for α = 0.57◦. The error is in
the same order of magnitude as the reading error, and greatlyless in many cases, so is
negligible.

Lastly, for angles lower than0, 573◦, the sine and the tangent of an angle can be
directely approximated by the arc length (the angle in radians). The error between the
arc length and the sine for an angleα is:

ǫ =
α − sin(α)

α

equals to0.0016% for α = 0.57◦, negligible in all the cases compared to the general
precision.
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1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9C C

1 1,5 2 2,5 3 3,5 4 4,5 5 5,5ST ST

100. tan(α) ≈ 100. sin(α)

αlog(100. tan(α)) ≈ log(100. sin(α))

Figure 26: Sine and tangent scale from0.57◦ to 5.7◦.

The computation of the cosine, sine or tangent of an angle outside the interval
[0..90◦] is directly deduced from the sine or tangent of an angle from this interval by
the usual trigonometric formulae:

cos(α) = sin(
π

2
+ α)

sin(−α) = sin(π + α) = − sin(α)

tan(
π

2
+ α) =

−1

tan(α)

tan(−α) = tan(π − α) = − tan(α)

11 Logarithms, exponential, powers

11.1 Decimal logarithms

The computation of a logarithm is straightforward when one has a logarithmic scale.
The logarithm of a numbera on the D scale is equals to the lengthla: the scale L is
thus simply linear (figure 27).

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1L L

a

log(a)

la = log(a)

log(a)

Figure 27: Logarithms.

To compute logarithms of numbers greater than10 or smaller than1, we writea
as:a = am.10ae , thenlog(a) = log(am.10ae) = log(am) + log(10ae), knowing that
log(10x) = x, we obtain:

log(a) = log(am) + ae

If we write the number under a scientific form, the logarithm is equals to the exponent
ae added to the logarithm of the mantissaam.
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11.2 Decimal powers

To compute10a, we have to split the integer partae (also called characteristic) from
the decimal partaf (also called mantissa) ofa: a = ae + af .

We can remark that10a = 10ae+af can also be written as10a = 10ae.10af . It is
easy to compute10af using the linear scale L and the logarithmic scale D (figure 28),
it is the mantissa of the result written in scientific form.10ae is straightforward to
compute and is the exponent part of the same result.

1 2 3 4 5 6 7 8 9 101,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9D D
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1L L

10af

af

log(10af ) = af

af

Figure 28: Power of 10.

For example:102.472 = 102 × 100.472. Using the cursor with0.472 on scale
L we found100.472 ≈ 2.965 on scale D. Thus,102.472 ≈ 2.965 × 102, which is
approximatively296.5.

11.3 Powers

The objective here is to calculatec = ab.

First method We compute the logarithm of the two members of the expression:
log(c) = log(ab). We havelog(ab) = b. log(a), so:

c = 10b. log(a)

The procedure is thus the following:

• Compute the logarithm ofa (see§11.1),

• Multiply this logarithm byb,

• Compute the power of10 of the last result (see§11.2).

This method, though indirect, is using only scales C, D and L,and works with all
numbersa andb (Except for the necessary adjustments).

Second method We use a scale LL (logarithm of the logarithm, or log-log), gradu-
ated according to the lawl = log(k. ln(a)). Indeed,log(k. ln(ab)) = log(k.b. ln(a)),
so

log(k. ln(ab)) = log(b) + log(k. ln(a))

Numbera on scale LL gives us a lengthla, on which we add the distancelb given byb
on log scale C. The valuec on scale LL aligned withb on scale C is the result ofa to
the powerb: ab (figure 29).
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1 2 31,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9C

3 4 5 6 7 8 9 10 20 30 40 50 200 500 1000 5000 20000LL3 LL3

b

a ab

la = log(k. ln(a)) lb = log(b)

lc = log(k. ln(ab))

Figure 29: Calculatingab.

LL scales are not relatives but absolutes: they are graduated with the logarithm of
a logarithm, thus the rulelog(10.a) = 1 + log(a) cannot be applied. We then have to
use several scales according to the interval we should use. Usual LL scales are:

• LL3: l3 = log(ln(a)) (interval[e..e10]),

• LL2: l2 = log(10. ln(a)) (interval[e0,1..e]),

• LL1: l1 = log(100. ln(a)) (interval[e0,01..e0,1]).

The end of scale LL1 corresponds to the beginning of scale LL2, the end of LL2 to the
beginning of LL3 (e being the base of natural logarithms).

To calculate1.1474.32 (figure 30), we align the origin of scale C on1.147 of scale
LL2. The result,≈ 1.808, can be read using the cursor on LL2 aligned with4.32 on
scale C.

1 2 3 4 5 6 7 81,1 1,2 1,3 1,4 1,5 1,6 1,7 1,81,9C

1,01 1,012 1,014 1,016 1,018 1,02 1,025 1,03 1,035 1,04 1,045 1,051,05 1,06 1,07 1,08 1,09 1,1LL1 LL1

1,12 1,14 1,16 1,18 1,2 1,25 1,3 1,35 1,4 1,45 1,5 1,6 1,7 1,8 1,9 2 2,2 2,4 2,6LL2 LL2

4.32

1.147 1.1474.32 ≈ 1.808

Figure 30: Calculating1.1474.32.

11.4 Natural logarithms, exponential

We know thatln(a) = ln(10). log(a), so:

ln(a) ≈ 2.303. log(a)

This is equivalent to compute a decimal logarithm which can then be multiplied by a
constant.

To compute an exponential without using a LL scale, we use thefirst method of
computing a power (§ 11.3). log(ea) = a. log(e), we should then remind us the con-
stantlog(e) ≈ 0.434. We only need to multiplya with this constant,0.434, and read
the result on scale L, with all the necessary adjustments.
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11.5 Squares

To computec = b
√

a, we can remark thatb
√

a = a1/b. The calculation is the same as a
power, with the exponent being the reciprocal of the square base.
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