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1 Introduction

From the nineteenth century up to the 70’s, slide rules haea the precious auxiliaries
of engineers, architects and technicians worldwide.

Since then, they have been outdated by electronic pocketletdrs. Slide rules
allow one to quickly perform a lot of numerical computatipsach as multiplying,
dividing, computing squares, cubes, extracting squarecabe roots, trigonometry,
etc.
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Figure 1:Graphoplex slide rule, “Polyphase” type.

In this article, we are going to study in details the prinegpbf a classical slide
rule (“Mannheim” or “Polyphase” and derivatives), throutje analysis of the under-
lying mathematical relations and several numerical exampAn high-school level in
mathematics should be sufficient enough to read this article

2 Mathematical principles

All sliding rules are based upon the usage of logarithms.ldgarithm is a quite handy
mathematical function which allows us to transform a militation into an addition:

log(a x b) =log(a) + log(b)

The logarithm of theroduct is thesum of the logarithms. That way we transform
a multiplication, which is quite complex to perform, into addition, which is much
easier. The adding of two values is easy to achieve by thapasition of two physical
lengths: to multiplya andb, we add their logarithms. The valgdevhich logarithm is
equal to this sum is then equal to the product dfy b.

Following the same idea, we use the equation below to dividentumbers:

log(a/b) = log(a) — log(b)



A division is tranformed into a substraction.
The same principle is used for manual computation, but bygusumerical loga-
rithmic tables.

3 Multiplying
3.1 Principle

Below is a logarithmic scale, on which each graduatiois located at a length of
l, = log(a) from the originl (figure 2).

lo = log(a)
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Figure 2: Logarithmic scale.

This logarithmic scale has the noteworthy property thatoifi yranslate a cursor
on this scale by some lengthstarting from any numbet, you will find this number
multiplied by k" (k = log(k")) (figure 3).
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Figure 3: Adding a distance to multiply.

In order to multiply two numberg andb, we use two logarithmic scales C and D.
The lengthl, on D between the graduatidnand the graduation corresponding to the
numbera is I, = log(a). In the same way, the graduationtobn the C scale will give
us the lengthi, = log(b). Thus the lengtl. = [, + [} is the logarithm ot = a x b.

More precisely, we place the two scales C and D side by sidebatranslating C
of a lengthl, we align the base of scale C (thgwith the graduation of on scale D.
Then, we report length afterl, (starting from scale C base) up to thgraduation on
scale C. The length. from the base of scale D to this graduation.is= I, + [;. We
can then directly read on scale D the product b (figure 4).
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Figure 4: Multiplyinga by b.



32 CandD?

Nowadays, slide rules are following the first model setup lmpédlée Mannheim, a
French artillery officer under Napoléon, who labelled therfscales of his rule by the
first four letters of the alphabet: A, B, C and D (figure 5). Tive fogarithmic scales,

being situated below, are thus using the C and D letterseS&éhnd C slides on a rule
relatively to A and D. (We will further see the usage of scaleand B.) The custom

has been kept to label the two main logarithmic scales C anevBr) if sometimes

other symbols are used (hotably in France!)

Figure 5: Location of A, B, C and D scales.

3.3 Example

For instance, we will multiply3.1 by 1.7 (figure 6). We translate scale C to place its
base (graduatioh) aligned with graduatios.1 on D. Then, we align the cursor (also
known as “hairline”) on thd.7 graduation on C. The product can be directly read on
D, it's 5.27.
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Figure 6: Multiplying3.1 by 1.7.

3.4 Out of range product

Sometimes the product of two numbers in the rafige 0] overflows10. The loga-
rithmic scale being graduated only up10, how can we proceed? In that case, we do
not compute directly the produetx b, buta x b/10 instead, which is in the interval
[1..10]. Dividing b by 10 is the same as translating everything to the left of a length o
l10 (length corresponding to the distance between graduatiand10). It's a property
from the logarithmslog(b/10) = log(b) — log(10) = log(b) — 1.

Technically, this is the same as aligning, not thef scale D, but the opposite
extremity (thel0), with the graduation corresponding #oon scale C. The product
(divided by10) can be read in front of thiegraduation on scale D (figure 7).
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Figure 7: Out of range product.

3.5 Mantissa and exponent

When a value is not in the intervgl..10], we work only with the mantissa part of the
number written in scientific notation, without taking intoceunt the exponent part.

A property of the power function intervenes, which is to sfamm a product of
powers in a power of sum. Indeed,

% x b = got?
thusifa = a,, x10% andb = b,, x 10%, the productis;x b = a,, X b,, x 10% < The
mantissa of the product is the product of the mantissasylegion made with numbers
in the rangg1..10], and the exponent of the product is the sum of the exponemis. O
only need to adjust the exponent of the result to the desiotdtion (scientific or
engineering).

For example, to compute the productlaf70 (1.37 x 103) by 0.121 (1.2 x 10~1),

we compute first.37 x 1.2 = 1.66. Then, adding exponent3 ¢ (—1) = 2) gives us
the exponent of the result, thus6 x 102, i.e. 166.

4 Divisions

4.1 First method

We use the same scales as for the multiplication, but in ardiftt way. We want to
compute here’ = o'/, which can be also written a$ x v’ = «’. This is the same
as looking for the term’ which, multiplied by a factob’, givesa’. We use the same
method as for multiplying, using for o’ /V/, b for v/, andc = a x b for a’.

We align theb’ graduation on scale C with theé graduation on scale D. The quo-
tient is read on scale D and corresponds to the base of scake Ghel graduation.
(figure 8).

To the opposite of the multiplication process, where thedpob can overflowl 0,
here the quotient can underflawlIn that case, use thi& graduation to read the result,
and divide the quotient by0.

In order to compute the quotied95 by 830, align8.3 on scale C witt8.95 from
scale D. The result is less thdan so we need to read it on scale D, belo® from
scale C, which gives.475. Adjusting exponents by a method identical to the one of
multiplication, we obtair8.95/830 ~ 4.75.102 (figure 9).
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Figure 8: Division, first method.

3
CATR AT
N

‘1”WH“W”EMW"‘“6‘““““f“““‘g“pwgm%@

3.95/8.3 ~ 4.75/10

A
81,9

Figure 9: Dividing3.95 by 830.

4.2 Second method

We use here a second scale Cl, inverted from C£@ Inverted, in red on figure 10).
The base of scale CI (graduatibron the right hand-side) should be aligned here with
the graduation on scale D of dividentl Going back to the left (that is, by substracting
from [, the lengthl,), the graduation on scale D aligned withon scale CI gives
directly the result’ = o’ /b'.

Zr:’ — Zrl’ _ lb’ . b/ Z/)’

Figure 10: Dividing, second method.

If the result of the division is not in the intervAl..10], align the left base (gradua-
tion 10) of Cl, compute the quotient 10 and divide the result by0.
Figure 11 show the computation ®fl4/7.65.
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Figure 11: Dividing2.14 by 7.65.

The main advantage of this method, apparently more comm@eause needing a
new type of scale (Cl), is clearly revealed in the section 5.

4.3 Reciprocal

The use of the two scales C and Cl allows the direct computafithe reciprocal /a
of a numbem.



Indeed]og(1/a) = —log(a), andlog(10 x 1/a) = log(10) — log(a), from where:
log(10 x 1/a) =1 — log(a)
Figure 12 explicits the computation.

10 x % .. 1 —log(a) =log(10 x 1)
ct0.9 .8 7 . 6 3
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Figure 12: Computation af/a.

As in multiplication, it is easy to compute the reciprocalofiumber outside the
interval [1..10], by writing the number in scientific notation and by using thenula
1/10° = 107°.

5 Chaining multiplications and divisions
51 General method

To chain operations, like a quotient of products such as:

a; X ag X as
b1><b2

it is possible to compute the product a; x as X a3, keep the resuli, then compute
b = by X by, keep the result, then finally dividec = a/b. But we need to keep two
intermediate results.

There is another method, way simpler, which prevents us d@fngrdown any
intermediate results. If we use the second method to ditheersesult of the division is
on the D scale, ready to be re-used for the next computatigesThus, by alternating
multiplications and divisions, we use the previous intadiate result as a base for the
next computation.

The method is the following:

e Computeu; /by,

e Multiply this result byas,

e Divide by b,

e Multiply then byas, which gives us the final result.

The first operand of stage + 1 is in all cases the result of stage There is no
intermediate result to keep.
For example we will compute

7.1 x 0.51 x 22800
0.25 x 61.5




Only four moves of the rule are needed to obtain the result.
Computer.1/0.25 ~ 28.4 (figure 13).

7.1/0.25 ~ 28.4
Figure 13: Chained computation, first step.

Align the 10 of the multiplication scale C on the result which was comgutkat
is 28.4. Multiplying by 0.51 gives14.5 (figure 14).
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Figure 14: Chained computation, second step.

Align the 10 of the division scale Cl on the result. Dividingl.5 by 61.5 gives
0.236 (figure 15).
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14.5/61.5 ~ 0.236

Figure 15: Chained computation, third step.

Then, align the of the multiplication scale C on the result, and multiply22800,
which gives us as a resdi880 (figure 16).

l—do' 9 i 8 - 6 '\HHHEHHHH'\\HH\\\\\4 i 3 i i
1,81,9

D" 1,2'13'1,4'1,51,61,71,81.9 4
0.236 0.236 x 22800 ~ 5380
Figure 16: Chained computation, fourth and last step.

The exact result equals69, 678.., which gives us an error of roughty 2%.



5.2 Multiplying threefactors

There is a quick method to multiply 3 factosisx b x ¢, using only one slide rule
translation.

Using the Cl inverted scale, we can multiply two numbeasndb by aligning them
on the Cl and D scale. The productx b is then on the D scale, aligned with the
base of ClI scalel]. This intermediate product can then be easily reused afirgihe
operand of a classical multiplication with the C scale, gsiras the second operand.
The graduation of on C shows us directly the productx b x ¢ on D (figure 17).
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Figure 17: Multiplying 3 factorsa x b x c.

6 Proportions& conversions

Proportion problems are encountered frequently, such agecting from one unit to
another (inch to millimeters, knots to km/h for example)tmapply a proportion rule
(how much weighB.73 litres of a product, when.27 litre weight0.965 kg). These
computations are equivalent to the computation,ofvith

ay a2

by bo
knowing as /b2 andb;. This proportion rule can be written as/as = by /be, that
is log(a1/az) = log(b1/b2). Knowing thatlog(z/y) = log(z) — log(y), the last
equality can be rewritten dsg(a;) — log(az) = log(b1) — log(bs). Let us pose
lo = log(ay) — log(az) andl, = log(by) — log(bs). We can remark (figure 18) that
by aligning factorsi, etb, on respectively D and C scales, will be directly read on
scale D aligned witth; on C.

bo lp b1
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Figure 18: Proportions
In other words, the distance frotn to b, on scale C is the same as the distance

from a; to as on scale D. Once the scales setup, one can convert how maresvad
wants, without modifying the sliding rule ratio.



When converting out of range values, shift the C scale of gtleh, to the left,
to bring back thel0 index in place of thel index, without forgetting to adjust the
computed result of a factdn.

Figure 19 gives an example of converting with a ratid % /2.44.

T T T
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1,1 12 131

2.64 x 2.44/1.74 =~ 3.70

Figure 19:3.70 is t02.64 what2.44 is to 1.74.

7 Squares & squareroots
7.1 Squares

We use a scale, called A, graduated according to the logaoftthe square root. The
length from the origiri of a graduation is given by:

I = log(v/a)

To compute the square of a numbemve slide the cursor over the graduation dor
on the D scale. Thevalue aligned on scale A equals to this squéare: a2. We have
lo = Iy, lo = log(a) andl, = log(v/b), solog(a) = log(v/b), thusb = a? (figure 20).

I, = log(\/) 7/1) = a?

0 0 60 . 70. 80.901008

lo =log(a) a

Figure 20: Square computation.

In order to compute the square of a number out of the raéhge|, by writing this
number on scientific form = a,,.10%, we haves® = a2,.10%2, ora? = a2,.10%%,
The mantissa of the square is the square of the mantissaspbaent of the square is
twice the exponent. See the exampl® 3882 on figure 21.

0.3882% ~ 15.05 x 1072 = 0.1505

[T 1
0.388 =3.88 x 107!

Figure 21: Square df.388.

10



7.2 Squareroots

To extract the square root of a number, we could believe tpesite process would do
it. The problem being that scale A has two intervals, respelgt[1..10] and[10..100].
Which one are we going to use to compute the square root of dauout of the range
[1..100]?

We have to write the numbaron which we want to compute the square, under the
forma = a,,.10%%, with a,, in the interval[1..100] anda. integer. The square of

equals to:
Va = \/ay,.102a

Va = y/an,.10%

To compute the square root 878312, write 778312 = 77.8312 x 10%, compute
V77.8 ~ 8.82, we obtain then/778312 ~ 8.82 x 102 = 882.

thus

8 Cubesand cuberoots

The method is based on the same principle as computing sjaiadesquare roots. The
scale used here, called K, is graduated upon:

I = log(V/a)

To compute the cube root, write the numlaeon which we want to compute the
root under the formu = a,,.103-%, with a,, in the interval[1..1000] anda. integer.
The remaining of the procedure is straightforward.

9 Usual calculations

9.1 Converting degree/minute

We found, on the C and D scale of most slide rules, some casstah p” et p
(figure 22). This constants allows, by aligning the base ofaeson one of them,
to transform angles expressed using the DMS system (Delglieate, Second) onto
angle in radian (arc length), or the reverse.

o p = 380x60 ~ 3437, 747, converting an angle in minutes,
e p” =60 x p’ ~ 206265, converting an angle in sexagesimal seconds,

e pr =100 x p’ ~ 636619, converting an angle in decimal seconds.

11
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Figure 22: Usual conversion constants.

9.2 Volume of acylinder

C = \/E ~ 1,128379
™

allows the calculation of the volumié of a cylinder of diameted and heighta:

The constant

This equation can also be written under the form:

d
\/VZEX\/E

Align the mark of the constaidf on scale C withi on scale D. Slide the cursor éon
scale B, the volunV can then be directly read on scale A. Figure 23 visually érpla
the computation.

log(d (‘\/ﬁ) _ 100.(W)
A;‘l‘ ] ‘thhimhhhhﬁi .9,

log(d/C)

[annnii
D] 11712113 14'1'5'1,6 1.71,81

log(d) d

Figure 23: Cylinder’s volume.

9.3 7-Shifted scales

On some slide rules we found scales CF, DF, even CIF. Thesés & identical to
respectively C, D and ClI, but shifted bymafactor, on the right by a length. =
log(m) ~ 0.497. With theses scale one can perform all classical compuigtibut
multiplied/divided with ar factor. For example, to computex 2.3 x 1.7, place the
origin of scale C aligned t8.3 on D, then read the result on DE2.28.

Without using the shifted scales, we can usesthmnstant on scales A, B, C and
D to easily perform theses computations. The 3-factor plidation method 5.2)
could be used in that case.

12



10 Trigonometry

Scale S (figure 24), graduated according to the law log(10.sin(«)), allows the
computation of the sine of an angle frén74° to 90° (sin(5.74°) ~ 0.1, sin(90°) = 1,
that is, the interval of the C logarithmic scale dividedty.

To compute the sine of an angle, directly read on the logaiitscale the result
and divide it byl0. To compute the angle for which the sine is known, proceetén t
same manner but interverting the two scales.

«

log(10. sin(a))

4 0g

Q 5 60,708
Tt i

6l B9 10
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NN RR VAT RN RN

_&10. sin(a)

Figure 24: Sine scale from7° to 90°.
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The computation of the tangent and its inverse is made usagame principle on
a scale T, graduated upon the lawt log(10. tan(«)) (figure 25).

«
||||||||||||;'||i|||||||||||| I \2\5\ Tt \3\0\ Tt \%ﬁ'ﬁgﬁ‘#ﬁ‘ﬁ'ﬁsT
A ‘4\M\M\T\hhhi?hhhiu’\‘”‘6““"“‘7‘“"““&”hﬁ1ﬁj]§tmﬁﬂﬁm[é%
J‘Al(). tan(«)

Figure 25: Tangent scale from7° to 45°.

log(10. tan(«))

To compute the sine or the tangent of an angle in the rarsg8° and5.7° (sin(0.573°) ~
tan(0.573°) ~ 0.01), we use in both cases a unique scale called ST (figure 28); gra
uated according to the laiv= log(100.(sin(«) + tan(«))/2). We can use one rule
for both because for small angles, sine and tangent areyrtbarsame. The errog,
between the sine and the tangent for a given angls:

tan(a) — sin(«)
“tan(a) + sin(a)

which gives0.496% for o = 5.7°; and only0.005% for o = 0.57°. The error is in
the same order of magnitude as the reading error, and gtealiyn many cases, so is
negligible.

Lastly, for angles lower thafi, 573°, the sine and the tangent of an angle can be
directely approximated by the arc length (the angle in nr@g)iaThe error between the
arc length and the sine for an anglés:

a — sin(a)
e= — >\
«
equals ta0.0016% for o = 0.57°, negligible in all the cases compared to the general
precision.

13



log(100. tan(«)) ~ log(100. sin(c)) -«
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= 100. tan(a) & 100. sin(«)

Figure 26: Sine and tangent scale frori7° to 5.7°.

The computation of the cosine, sine or tangent of an anglsidaithe interval
[0..90°] is directly deduced from the sine or tangent of an angle froiminterval by
the usual trigonometric formulae:

cos(ar) = sin(z + )

2

sin(—a) = sin(r + a) = — sin(a)
-1

tan(a)

tan(g +a)=

tan(—a) = tan(m — o) = —tan(«)

11 Logarithms, exponential, powers

11.1 Decimal logarithms

The computation of a logarithm is straightforward when oas & logarithmic scale.
The logarithm of a number on the D scale is equals to the lendth the scale L is
thus simply linear (figure 27).

l, = log(a) - a
Dj‘i”mll 12 13 14 15161718192\\\\\\\\\\ [T [T ‘3‘ M ‘A\H\\HHHHHH\!_)HHH\HH T 8 ﬂwgmﬂwcp
'—'—
log(a) log(a)

Figure 27: Logarithms.

To compute logarithms of numbers greater th@ror smaller thanl, we writea
as:a = a,.10%, thenlog(a) = log(a,.10%) = log(a,) + log(10%<), knowing that
log(10%) = x, we obtain:

log(a) = log(am) + ae

If we write the number under a scientific form, the logaritteequals to the exponent
a. added to the logarithm of the mantissg.

14



11.2 Decimal powers

To computel 0%, we have to split the integer part (also called characteristic) from
the decimal part; (also called mantissa) ef a = a. + ay.

We can remark that0* = 10?74/ can also be written ak)® = 10%.10%. It is
easy to computé0“/ using the linear scale L and the logarithmic scale D (figurg 28
it is the mantissa of the result written in scientific form0 is straightforward to
compute and is the exponent part of the same result.

log(10%/) = ay v 10%/
D{”‘Ul‘,l‘ 12'13'1,4'155161,71,81,9 2””””“ A 3‘ prrere ‘A‘“1‘MWwwgwwu“‘H‘6””“”‘?””””§Huwgwwmﬁd3
L RuuttwtotSiuotiotontto oottt b oot s oo SeSototabnnse Bttt Bt Sttt L
af "oy

Figure 28: Power of 10.

For example: 102472 = 102 x 10°472, Using the cursor wit).472 on scale
L we found 10472 ~ 2.965 on scale D. Thus]0?4™ ~ 2.965 x 102, which is
approximatively296.5.

11.3 Powers

The objective here is to calculate= a®.

First method We compute the logarithm of the two members of the expression
log(c) = log(a®). We havdog(a®) = b.1og(a), So:

c= 10b log(a)

The procedure is thus the following:
e Compute the logarithm af (see§11.1),
e Multiply this logarithm byb,
e Compute the power df0 of the last result (segl1.2).

This method, though indirect, is using only scales C, D andrd works with all
numbers: andb (Except for the necessary adjustments).

Second method We use a scale LL (logarithm of the logarithm, or log-log)ydm-
ated according to the law= log(k.In(a)). Indeedlog(k.In(a’)) = log(k.b.In(a)),
o)

log(k.1n(a®)) = log(b) + log(k.1n(a))

Numbera on scale LL gives us a length, on which we add the distanéggiven byb
on log scale C. The valueon scale LL aligned witlh on scale C is the result afto
the powem: a® (figure 29).

15



l. = log(k.In(a®)) a a®
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lo =log(k.In(a)) T, = log(b) \b

Figure 29: Calculating’.

LL scales are not relatives but absolutes: they are gradwéth the logarithm of
a logarithm, thus the rullvg(10.a) = 1 + log(a) cannot be applied. We then have to
use several scales according to the interval we should umalUL scales are:

e LL3: I3 = log(In(a)) (intervale..e1?]),
o LL2: I = log(10.1n(a)) (interval[e®*..e]),
e LL1: /; = log(100.1In(a)) (interval[e®L..c%1]).

The end of scale LL1 corresponds to the beginning of scale the2end of LL2 to the
beginning of LL3 ¢ being the base of natural logarithms).

To calculatel .1474-32 (figure 30), we align the origin of scale C ari47 of scale
LL2. The result,x~ 1.808, can be read using the cursor on LL2 aligned witB2 on
scale C.

1.147 1.147%%% ~ 1.808
_s -/
LL2 2 ddde 116 118 22 ity LL2
LI O O RO R PR AR AR IR A R B A O i LLL
C ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||ﬁ|||||||||:| ot S ‘4\iH\‘\h\'mhhi?hhhh"”‘6””"”‘7‘”"”“8
:'—1.32

Figure 30: Calculating.147432,

11.4 Natural logarithms, exponential
We know thafin(a) = In(10). log(a), so:

In(a) = 2.303.log(a)

This is equivalent to compute a decimal logarithm which d¢sntbe multiplied by a
constant.

To compute an exponential without using a LL scale, we usditsiemethod of
computing a power§(11.3). log(e®) = a.log(e), we should then remind us the con-
stantlog(e) = 0.434. We only need to multiply: with this constant().434, and read
the result on scale L, with all the necessary adjustments.
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11.5 Squares

To compute: = /a, we can remark thay/a = a'/*. The calculation is the same as a
power, with the exponent being the reciprocal of the squaseb
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