KATALOG

FREISCHWEBENDE PRÄZISIONSPANTOGRAPHEN • PLANIMETER
INTEGRAPHEN • INTEGRATOREN
HARMONISCHE ANALYSATOREN
KOORDINATOGRAPHEN

a AFFINOGRAPHEN a

Mathematisch-mechanisches Institut

G. Coradi Zürich IV

GRAND PRIX ST. LOUIS 1904
GRAND PRIX PARIS 1900
EHRENDIPLOM ZÜRICH 1894
MÉDAILLE D'ARGENT PARIS 1886
DIPLOM ZÜRICH 1883

Paris 1889

Mathematisch-mechanisches Institut

G. Coradi

Weinbergstr. 49 Zürich IV Weinbergstr. 49

(Schweiz)

Gegründet 1880

Telegramm-Adresse: "Coradige"

KATALOG

über

freischwebende Präzisions-Pantographen,

Affinographen,

Instrumente zur mechanischen Integration

Kompensationsplanimeter, Kugel- und Scheibenplanimeter, Integratoren, Integraphen und Kurvimeter, Harmonische Analysatoren

Koordinatographen

Detail-Koordinatographen und Koordinatometer
Koordinatentransformator

Ausgabe 1910

Ohne Verbindlichkeit

Geschäftliche Bemerkungen.

- Briefe und Gelder erbitte mir franko; Briefe in die Schweiz kosten: 25 Cts.;
 Pf.; 25 Heller; Postkarten: 10 Cts.; 10 Pf.; 10 Heller.
- Die Preise verstehen sich netto comptant ab meinen Werkstätten in Zürich. Dieselben sind in Franken und Reichsmark angesetzt (1 Mk. = 1 Fr. 25 Cts.) Die bei den Planimetern (No. 29 bis No. 37 c) in Mark angegebenen Preise enthalten die Auslagen für Verpackung, Porto und Eingangszoll in Deutschland.
- Für sorgfältige Verpackung trage ich Sorge, und berechne hiefür nur die eigenen Auslagen.
- Für solide, exakte Ausführung und Justierung meiner Instrumente leiste ich Garantie.
- 5. Der Versand meiner Instrumente erfolgt in der Regel gegen Nachnahme oder vorherige Einsendung des Betrages. Jene Herren, welche mir bereits bekannt oder mir durch ihre Stellung oder mir bekannte Herren empfohlen sind, sowie an staatliche oder städtische Behörden und Institute, gestatte gerne Zahlung nach Empfang und Prüfung, oder nach spezieller Uebereinkunft.
- 6. Einsichts- und Auswahlsendungen kann ich nicht gestatten, dagegen gebe ich bei Auswahl der Instrumente auf Grund meiner Erfahrungen gerne in gewissenhaftester Weise meinen Rat!
- 7. Ich bin stets bestrebt, meine Planimeter und Pantographen vorrätig zu halten. Bei der grossen Nachfrage nach diesen Instrumenten ist mir dies jedoch nicht immer möglich gewesen, und bitte daher im Interesse rechtzeitiger Ankunft um möglichst frühzeitige Bestellung.
- 8. Preisermässigungen kann ich nicht gewähren.
- Da ich stets bestrebt bin, durch Anbringung zweckmässiger Verbesserungen die Instrumente weiter zu vervollkommnen, stimmen die Abbildungen nicht immer ganz mit der wirklichen Ausführung der Instrumente überein; soweit dies jetzt der Fall ist, wird es im Text erwähnt.
- 10. Die Herren Auftraggeber sind gebeten, ihre Adresse event mit Angabe der nächsten Eisenbahnstation recht genau anzugeben, ebenso ob die Sendung per Eilfracht, gew. Fracht oder per Post erfolgen soll, eventuell bitte um Angabe des zu wählenden Transportweges. Die Versendung erfolgt auf Rechnung und Gefahr des Bestellers.
- Die mit dieser Preisliste gemachte Offerte ist freibleibend. Rechtsverbindliche Lieferungstermine werden nicht eingegangen, doch bin ich bestrebt, den bei Auftragsbestätigung angegebenen Lieferungstermin einzuhalten.
- 12. Durch vorliegendes Preisverzeichnis werden frühere Notierungen ungültig.

Zürich IV, 1910.

A. Freischwebende Präzisionspantographen.

Jedem Pantographen wird eine Broschüre beigegeben, enthaltend Beschreibung und Anleitung zum Gebrauch derselben.

(Beschrieben in "von Schlieben", Handbuch der Vermessungskunst.

9. Auflage, v. W. Caville, Seite 468).

Brönnimann, Katastervermessung, Bern 1888.

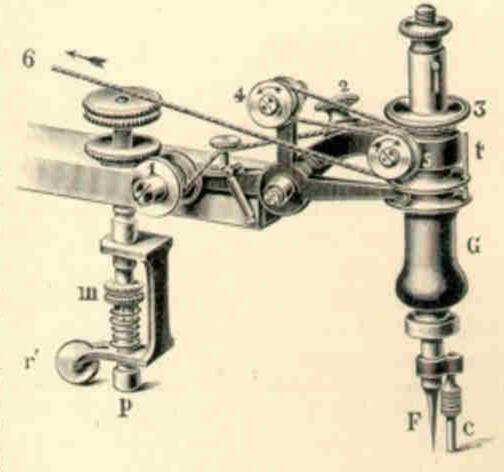
Zeitschrift für Vermess.-W., V. Bd., Seite 93, VI. Bd., Seite 368 u. a. O.

Beste, genaueste und vorteilhafteste Hülfsmittel zur Ausführung von Reduktionen und Vergrösserungen von Plänen und Karten; unübertroffene stetig vervollkommnete Konstruktion.

Vorzüge dieser Pantographen.

 Infolge der rationellen Konstruktion und Herstellungsweise, und der äusserst exakten Ausführung sämtlicher Teile derselben, ist die Genauigkeit der Reduktion eine fast absolute, und übertrifft zumeist die Erwartungen der Besteller.

 Die Handhabung und Aufstellung des Instruments ist äusserst einfach und bequem, die Führung ungemein leicht, so dass jeder Kontur wie beim Schreiben nachgefahren


werden kann.

3. Mit keiner andern Konstruktion lassen sich Vergrösserungen so leicht und zuverlässig ausführen; da eine und dieselbe Stellung der Charniere zugleich zum Vergrössern und Verkleinern dient, so ist die Genauigkeit des Instruments für beide Verwendungsarten gleich gross. Die Fehler der Vergrösserung nehmen nur in dem Verhältnis zu, als sich die unvermeidlichen Einstellungsfehler vergrössern.

4. Die Teilung auf den Stäben der Instrumente I-III kann zur exakten Einstellung der verschiedensten Verhältnisse verwendet werden, da der Nullpunkt der Teilungen sich

genau auf das Zentrum der Achsen bezieht.

5. Die Führung des Instruments sowie die Handhabung des Auslösemechanismus zum Heben und Senken der Zeichen- und Punktierstifte ist bequemer als bei irgend einer andern Konstruktion. Beides geschieht mittels des Griffs G (vergl. nebenstehende Abbildung) und erfordert nur die Anwendung der rechten Hand, so dass die linke Hand zur Entlastung des Oberkörpers frei bleibt. Die Bewegung des Auslösemechanismus ist der unwillkürlichen Bewegung angepasst, welche die Hand beim Beginn und Ende des Nachfahrens einer Linie machen will. Zieht man den Griff G nach unten, so geht auch der Zeichnenstift auf der Planfläche herab - in welcher Stellung

er durch eine Drehung des Griffes G fixiert werden kann - wird der Griff G gehoben, so hebt sich auch der Zeichenstift und wird durch eine am Auslösehebel angebrachte Spiralfeder oben gehalten. Für die Benützung des Punktierstiftes kann durch Verschiebung ihres Aufhängepunktes diese Spiralfeder so verstärkt werden, dass sie imstande ist, Lie Spitze aus dem Papier zu ziehen und in der Höhe zu halten. Diese vor kurzer Zeit angebrachten Verbesserungen erleichtern das Arbeiten mit Pantographen ungemein und machen dasselbe weniger ermüdend.

6. Die Fahr-, Zeichen- und Punktierstifte sind bei allen diesen Pantographen so eingepasst, dass sie, ohne zu wackeln, durch ihr eigenes Gewicht fallen; dieselben sind schön glänzend poliert und vernickelt, so dass sie nicht rosten und leicht rein zu halten sind. Der Fahrstift ist oberhalb seiner Hülse mit einer Mutter und Federhülse versehen, mittelst welcher derselbe auf beliebige Höhe gestellt und auch direkt zum Punktieren beim Vergrössern verwendet werden kann. Diese Vorrichtung erleichtert das scharfe Finstellen auf bestimmte Punkte, während die unterhalb der Hülse am Fahrstift angebrachte kleine Stütze so gestellt werden kann, dass die Fahrstiftspitze knapp über dem Papier schwebt, wodurch ein sehr exaktes Nachfahren ermöglicht und das Original vor Beschädigung durch die Fahrstiftspitze geschützt wird. Ueber die Spitze des Punktierstiftes ist eine Hülse geschraubt, welche ein zu tiefes Eindringen der Spitze ins Papier verhindert, die Grösse der zu stechenden Punkte zu regulieren gestattet, und durch genügendes Herausschrauben die Spitze schützt vor Beschädigungen während des Nichtgebrauchs. In die Zeichenstifte passen die Faber'schen Künstlerstifte.

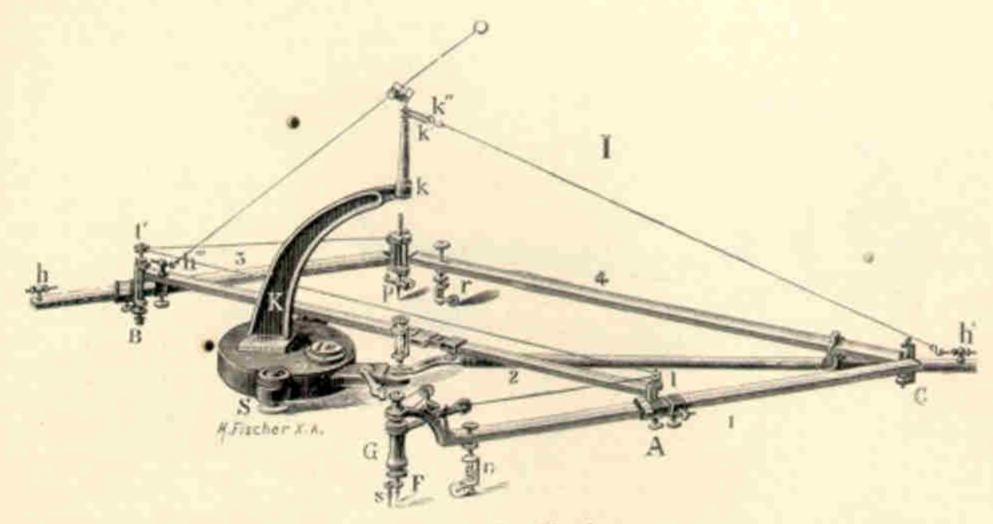
7. Zur Aufstellung des Instruments kann jeder beliebige Tisch verwendet werden, wenn er nur genügend eben, und so gross ist, dass Gestell, Original und Kopie auf demselben Platz haben. Auch können Zeichnungen auf Gegenstände übertragen werden, die eine gewisse Höhe haben (z. B. Lithographiesteine); man braucht nur Gestell und Original ent-

sprechend zu erhöhen.

Die genannten Vorzüge meiner Pantographen haben bewirkt, dass nach Bekanntwerden derselben das bisherige Vorurteil gegen die Verwendung der Pantographen (welches seinen Grund in der Ungenauigkeit und schwerfälligen Handhabung der ältern, auf Rollen gehenden Instrumente hatte) allmählich geschwunden ist, so dass bis heute über 2600 Stück derselben, meist der grössten Sorten, geliefert wurden.

Eine gedruckte Anleitung wird jedem Pantographen beigegeben.

Die Pantographen mit 60 cm langen Stäben gestatten bei Stellung 1/2 ein Quadrat von 50 cm Seite oder ein Rechteck von 40 × 60 cm mit dem Fahrstift zu umfahren, die mit 96 cm langen Stäben ein Quadrat von 80 cm Seite oder ein Rechteck von 160 × 70 cm. Für die Verhältnisse über 1/2 bis 1/5 wird die umfahrbare Fläche schmäler, für die Verhältnisse unter 1/2 bis 1/20 wird dieselbe entsprechend grösser.

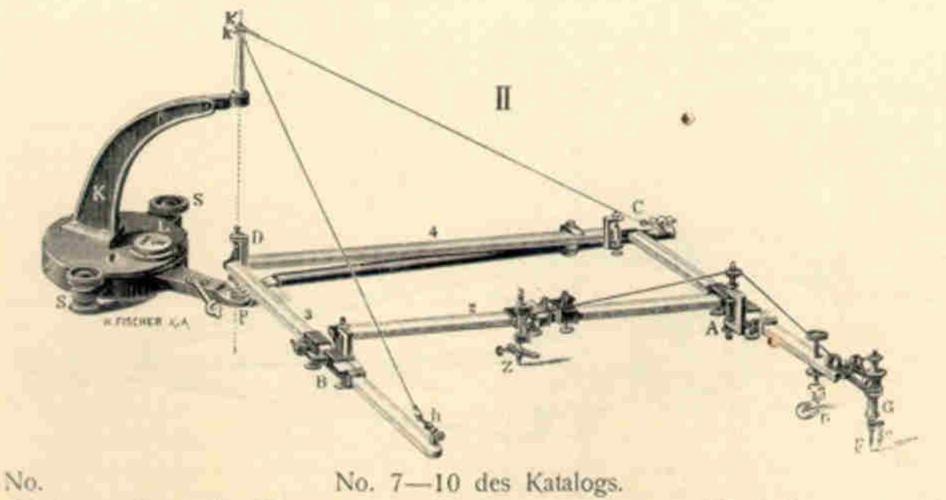

Jedem Techniker kann ich auf Grund meiner Erfahrungen die Anschaffung eines Prazisions-Pantographen bestens empfehlen, da sie mit vollkommenster Genauigkeit arbeiten, und überall rückhaltlose Anerkennung von allen Behörden und Technikern gefunden haben, die solche

Instrumente von mir bezogen und mit denselben arbeiten.

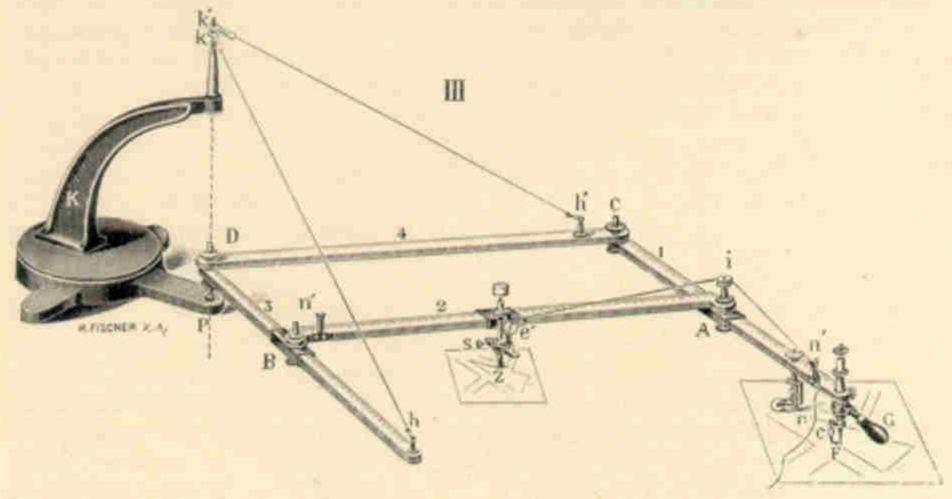
Die Stäbe sämtlicher Pantographen werden vernickelt geliefert, da solche gegen Oxydation geschützt und deshalb den Messingstäben vorzuziehen sind.

I. Pantograph (siehe nebenstehende Abbildung I) zum Kopieren, Verkleinern und Vergrössern in allen Verhältnissen.

Die Stäbe aus hartgezogenen, vierkantigen Messingröhren, welche in Millimeter geteilt sind, mit Nonien für 0,1 mm an den Hülsen und Mikrometerbewegung, Charniere zwischen Spitze gehend. Sehr bequeme Auslösung mittels einer die Fahrstifthülse zentrisch umschliessenden beweglichen Hülse, an welcher zugleich geführt wird. Die Laufrolle am Fahrstab ist mit einer Spiralfeder versehen, deren Wirkung sich durch eine Schraubenmutter regulieren lässt. Die Verhältnisse von 2/s bis 1/20 werden mit Pol am Ende, diejenigen von %/s bis 1/1 bis 3/2 werden mit Pol in der Mitte eingestellt. Zu diesem Zweck können Pol und Zeichenstift in ihren Hülsen vertauscht werden. Der unter-



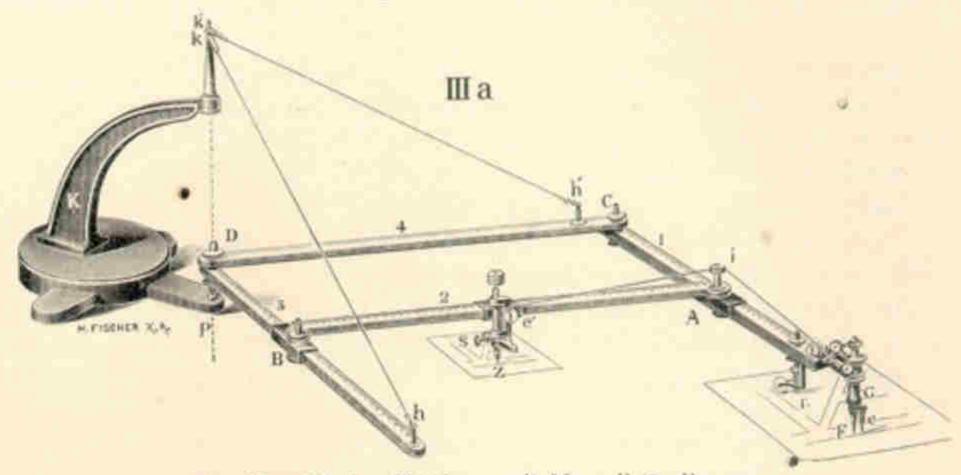
No. 1-4 des Katalogs.


stützungsbedürftige Teil des Instrumentes ist an einem diagonalen, unterhalb des Instruments befindlichen Tragrohr aufgehängt; letzteres stützt sich gegen einen im Gestellweingeschraubten Stahlzylinder, in dessen Zentrum das Kugellager des Pols eingelassen ist, so dass der Zug des Aufhängedrahtes keine Zwängung im Pol-Charnier bewirkt. Am Gestell zwei Schrauben und Dosenlibelle zur Vertikalstellung der Drehachse des Instruments; eine kleine Setzlibelle zur Horizontalstellung der Stäbe, ein Fahrstift, zwei Punktierstifte, ein Zeichenstift, sämtlich vernickelt, Stäbe vernickelt zum Schutz gegen Oxydation. Eleganter Kasten von Hartholz, poliert, mit gutem Schloss und Handgriff.

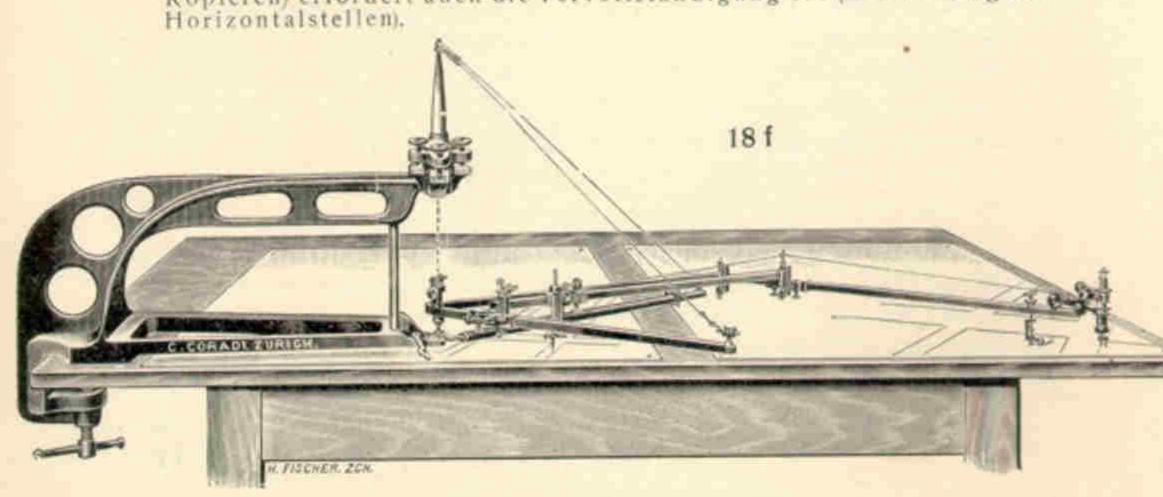
No.							Pre	ise:						
Ι.	Länge	der	Stābe	60	cm				,	- 2	Mk.	312	Fr.	390
	100			72								328	M	410
	36			84	100	4			43		- 6	344	20.	430
4.				96	10	6			*	-		360	ý	450
No.														
5	Fin we	iteres	vernic	kelte	s Tr	agrohr.	statt d	er Laufr	olle an	n Zei	chenst	ift, um	auch c	liesen

- II. Wie I (s. umstehende Abbildung II), jedoch nur zum Verkleinern und Vergrössern in allen Verhältnissen von 1/20 bis 4/5, (nur mit Aufstellung Pol am Ende verwendbar). Alles übrige wie bei I; auch diese Sorte Pantographen wird jetzt mit einem Tragrohr ausgestattet, welches unter dem Stab 4 angebracht ist, und sich gegen den im Gestell befestigten Stahl-Zylinder stützt, so dass der Zug des Aufhängedrahtes keine Zwängung im Pol-Charnier bewirkt.

No.					47	No.	7—10 d	les Kat	alogs.					
7.	Länge	der	Stäbe	60	cm	(6)			-		Mk.	272	Er.	340
8.	81	W.	107	72	186	190	-	2			M.	288		360
9.	34	10	92	84	16	16		4		181	M	304		380
10.			1881	96	M	20		4	¥		30	320	OF.	400
												30 weni	mer	

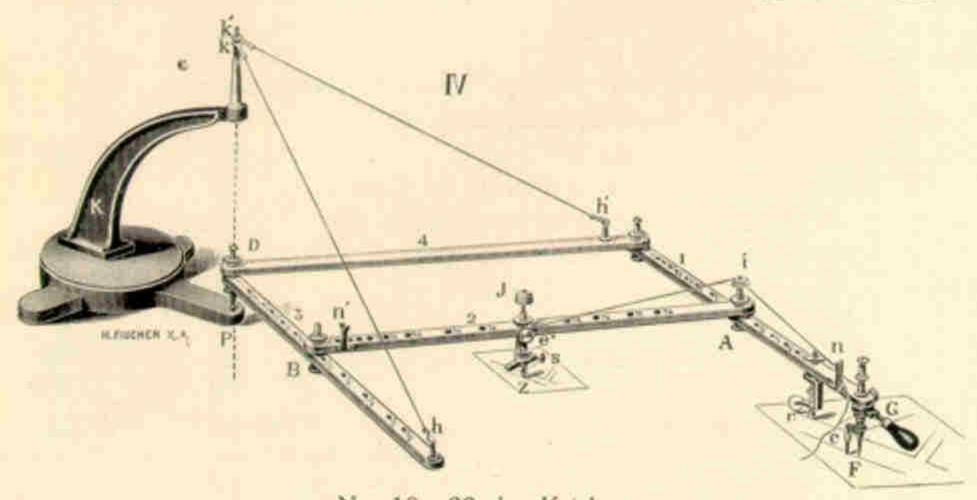


No. 11-14 des Katalogs.


III. Pantograph (siehe Abbildung III) zum Verkleinern und Vergrössern in allen Verhältnissen von ½0 bis ½. Die Stäbe aus vierkantigen hartgezogenen Messingröhren, welche in Millimeter geteilt sind. An den Hülsen versilberte Facetten zum Einstellen auf die Teilstriche. Charniere in gut eingepassten konischen Stahlaxen gehend. Einfache Auslösung; ohne Schrauben, ohne Libelle und ohne Riegel am Gestell. Je ein Fahr-, Punktier- und Zeichenstift, vernickelt. Stäbe vernickelt. Eleganter Kasten von Hartholz, poliert, mit gutem Schloss und Handgriff.

				(8)			-				100			
11.	Länge	der	Stäbe	60	cm	- 2	1. 24				Mk.	160	Fr.	200
12.	.10	197	100	72	20	181		,	- 90	7,9%	16	176	. 19	220
13.	W	19	29	84		*					. 10	192	10.	240
14.	19	10	. 10	96	29						16	208	16	260

Die Aufhängung bei III und IV ist derart, dass die Drehaxe des Instruments ohne weiters rechtwinklig ist auf der ebenen Tischfläche und die Stäbe des Instruments sich parallel der Tischfläche bewegen. Es braucht weder der Tisch noch das Instrnment genau horizontal gestellt zu werden.



No. 11—14 des Katalogs mit Vervollständigung a.
No. Vervollständigungen zu Nr. III.
15. a) Auslösemechanismus wie bei I mehr: Mk. 16 Fr. 20
16. b) Schrauben, Dosenlibelle und Riegel am Gestell,
und Aufsatzlibelle zur Horizontalstellung der
Stäbe mehr:
17. c) Nonien und Mikrometerwerk, mehr:
18. d) Einrichtung zum Kopieren (2/3-1/1-5/2) wie
bei I; je nach der Länge der Stäbe . Mk. 36, 40, 44, 48
Fr. 45.—, 50.—, 55.—, 60.—
18. e) Glasmarke und Loupe am Fahrstift Mk. 20 , Fr. 25
NB. Die Vervollständigungen No. 15a, 17c und 18d können nicht nachträglich geliefert werden; dieselben müssen vielmehr, wenn sie gewünscht werden, gleich mit dem Instrument bestellt werden. Die Vervollständigung 18d (Einrichtung zum Kopieren) erfordert auch die Vervollständigung 16b (Einrichtung zum

18. f) Neues Gestell mit freischwebendem Fuss (siehe umstehende Abbildung). Dieser neu konstruierte Träger wird am Ende des Tisches festgeschraubt; der 40 cm lange, gitterartige Arm, der an seinem Ende das Kugellager und die Aufhängeaxe des Pantographen trägt, steht etwa 1 cm mit seiner untern Fläche über der Tischfläche, so dass das Blatt, welches die reduzierte Zeichnung aufnehmen soll, bequem unter der Drehaxe des Pantographen verschoßen werden kann behufs rascher Orientierung von Reduktion und Original. Dies ist namentlich sehr wichtig für starke Reduktionen (1/5 bis 1/20), bei welchen der Fuss des gewöhnlichen Gestells auf dem Zeichnungsblatt ruht, und das Verschieben und Orientieren des Letztern sehr erschwert. Der Preis der Pantographen Sorte I, II, III b mit diesem Gestell ist Mk. 60.— Fr. 75.— höher.

Der Preis der Pantographen Sorte III mit diesem Gestell (18 f) anstatt des einfachen Gestells ohne Horizontalstellung ist Mk. 84.— Fr. 105.— höher.

No. 19-22 des Katalogs.

IV. Pantograph aus vierkantigen hartgezogenen Messingröhren zum Verkleinern und Vergrössern. Für alle Arbeiten, bei welchen das Eingeschrumpfte des Papiers nicht berücksichtigt zu werden braucht. Die Charniere bestehen aus 3 cm langen konischen Stahlaxen, welche in Metallhülsen gut eingepasst sind. Letztere werden in genau gebohrte Löcher der Stäbe eingesteckt und festgeschraubt. Für die Verhältnisse 1/20, 1/12, 1/10, 1/8, 1/6, 1/5, 1/4, 1/5, 2/5, 1/2, 3/5, 2/5, 5/4, 4/5 oder speziell gewünschte. Stäbe vernickelt. Einfache Auslösung und einfaches Gestell wie bei III. Je ein feinpolierter vernickelter Fahrstift, Punktierstift und Bleistift. Kasten zur Aufbewahrung, von Tannenholz, poliert, mit gutem Schloss und Handgriff.

19.	Länge	der	Stäbe	60	cm				Mk.	124.—	Fr.	155.—
20.	#	191	39	72	19		140	- 10	11	136.—	-10:	170
21.	9	19	20:	84	v		- 91	*	u	156.—		195.—
22.	40	yı :	32	96	9	 - /	300	14.	.00	168.—	<i>ii</i>	210

V. Pantographen mit Holzstäben zum Verkleinern und Vergrössern. Auf die Anfertigung der Stiften, Charniere und deren Hülsen, welche gleich konstruiert sind wie bei IV, sowie auf die Bohrung der Löcher wird ganz die gleiche Sorgfalt verwendet wie bei III nnd IV. Die Stäbe werden aus trockenem Birnbaumholz gefertigt, so dass sich dieselben bei trockener Aufbewahrung und Schutz vor direkter Sonnenwärme nicht leicht, verziehen. Eine Garantie für bleibende Genauigkeit dieser Instrumentensorte kann nicht übernommen werden. Verhältnisse, Auslösung, Stiften und Kasten wie bei IV. Statt der Laufrolle ist am Fahrstab ein Stahlstift mit feinpolierter und kugelförmiger Auflagfläche angebracht.

(Die Aufbewahrungskästen der Pantographen IV werden kürzer gemacht als bei I-III, indem der Mittelstab 2 vom Instrument getrennt und für sich im Kasten untergebracht wird, wodurch keinerlei Mehrarbeit entsteht, indem auch bei langem Kasten das Instrument nur auf dem Verhältnis 1/2 in den Kasten gelegt werden kann; somit immer eine Verstellung des Instruments erfolgen muss, wenn es nicht gerade auf 1/2 benutzt wurde).

VI. Pantograph*) zum Vergrössern und zum Verkleinern bis 1/50 wie Sorte III mit Auslösevorrichtung No. 15 a und Gestell 18 f wird nur in einer Länge von 96 cm angefertigt.

			k. 336.—	Fr. 4	20.—
25.	Reissfedern zu Pantographen, nach allen Seite	en			
	gehend	. 1	6.—	100	7.50
26.	Reservepunktierstiften, à		4.40	100	5.50
26.	a) Reservebleieinsatzröhre		4.40		5.50
27.	Apparat, um die Bleistifte der Pantograp	hen z	entrisch zu	spitzen,	zum

Anschrauben an den Tisch; samt feiner Flachfeile Mk. 22.— Fr. 27.50

Meine Pantographen sind unerreicht in Präzision und bequemer Handhabung. Die

Meine Pantographen sind unerreicht in Präzision und bequemer Handhabung. Die Preise sind aufs billigste notiert; - wenn anderwärts ähnliche Instrumente billiger offeriert werden, so ist das eben entsprechend minderwertiges Fabrikat!

Von den Abnehmern der bis jetzt von Zürich aus verkauften über 2600 Stück bin ich in der Lage, Behörden und Ingenieure des In- und Auslandes als Referenzen anzugeben!

Jedem Pantographen wird eine Einstellungstabelle für verschiedene Masstäbe und Verhältnisse beigegeben.

^{*)} Dieser Pantograph ist besonders eingerichtet, um Verkleinerungen von Plänen bis 1:50 damit in einfachster Weise und mit grösster Genauigkeit ausführen zu können. Es ist zu diesem Zweck nicht nötig, zwei Pantographen zu kuppeln, welches Verfahren umständlich zeitraubend, kostspielig und mit Fehleranhäufungen verbunden ist.

B. Planimeter.

No.

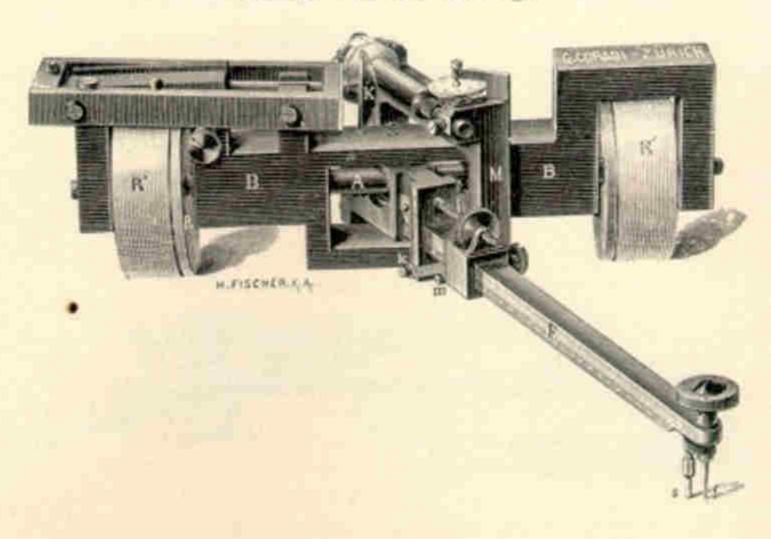
28. "Die Planimeter Coradi", Broschüre in deutscher, französischer, englischer und italienischer Sprache, 40 Seiten, 25 Abbildungen, Preis Fr. 1.-. (Der Betrag wird bei Bestellung eines Instrumentes zurückvergütet.)

Jeder Vermessungstechniker, der mit Flächenberechnungen zu tun hat, ein Planimeter besitzt oder zu kaufen beabsichtigt, sollte nicht versäumen, dieses nützliche Schriftchen durchzulesen, da es neben einer allgemeinen leicht verständlichen Theorie der Planimeter wertvolle Winke und allgemein gültige Regeln für die praktische Anwendung dieser nützlichen Instrumente enthält und Aufschluss gibt über die besondern Eigenschaften und Vorzüge der verschiedenen Konstruktionen. - Der Verfasser hat darin die Resultate seiner langjährigen Bestrebungen zur Vervollkommnung der Planimeter niedergelegt.

Werden die Planimeter für zwei Masse justiert verlangt (Meter und englisch Mass, Meter- und Klaftermass etc.), so erhöht dies den Preis um 5 Fr., ebenso wenn eine grössere Anzahl nicht gebräuchlicher Masstabverhältnisse gewünscht wird.

1. Kugelrollplanimeter.

Die Teilungen auf Messrolle und Zählrad sind auf weissem Celluloïd ausgeführt, die zylindrische Messrolle und das Kugelsegment aus harter Nickellegierung, mathematisch genau zylindrisch resp. sphärisch geschliffen.

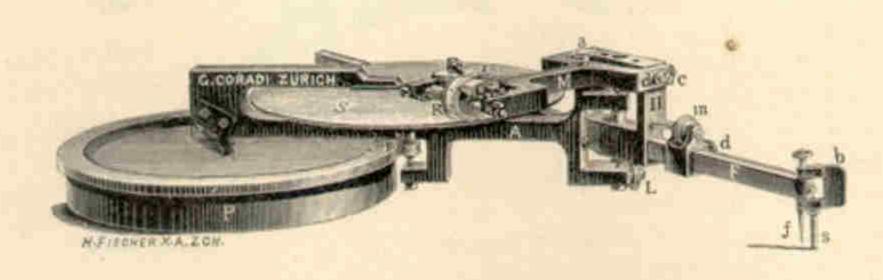

Alle Etuis sind so eingerichtet, dass der Fahrstab auf seiner Stellung verbleiben kann, wenn das Instrument hineingelegt wird (extreme Stellungen ausgenommen), die grössern Etui für No. 29-34 sind mit gutem Schloss und Handgriff versehen.

Das grosse Rollplanimeter No. 31 und 32 hat sich bei sorgfältiger Handhabung auf ebenen Plänen als das vollkommenste, genaueste und beste aller Planimeter bewährt!

Einfache, bequeme Aufstellung. Möglichkeit der Umfahrung sehr grosser und besonders langgestreckter Figuren. Grösste erreichbare Genauigkeit auf ebenen Planen.

29. Kleines Kugelrollplanimeter (siehe umstehende Figur) für Noniuseinheiten von 0,8 bis 0,32 mm, Walzenlänge 12 cm, Fahrstab 20 cm. Das Zählrad aus Celluloïd gibt 50 Umdrehungen der Rolle an. Samt elegantem verschliessbaren Etui und Kontrollineal Mk. 138.- *) Fr. 165.-.

^{*)} Die in Mark angesetzten Preise für Planimeter (No. 29-37c) verstehen sich innerhalb Deutschland wohlverpackt, franko und zollfrei!


No. Das Instrument ruht mit zwei gleich grossen zylindrischen Walzen auf dem Plane und lässt sich beliebig lange Strecken weit in gerader Linie vorwärts bewegen, wodurch die Walzen in Umdrehung versetzt werden, welche ihre Abwicklung der Kugelachse und dem darauf steckenden Kugelsegment mitteilen. Letzteres bewegt die zylindrische, dem Fahrarm parallel bleibende Messrolle mit Teilkreis aus Celluloid, welche mittelst Feder an das Segment angedrückt wird. Das linke Ende des Rahmens, in welchem die Kugelachse gelagert ist, lässt sich durch Drehen der mit Pfeil bezeichneten Exzenterschraube in die Höhe heben, so dass das Rädchen an der Kugelachse ausser Eingriff kommt, und beim ersten flüchtigen Umfahren der Figuren sich nur die Laufwalze dreht. Am Rahmen der Messrolle ist ebenfalls eine Druckschraube angebracht, um die Berührung von Zylinder und Kugel aufzuheben. Im Gestell B eine Bremsschraube, welche auf die Walze R wirkt und das Instrument auf dem Plan festzustellen gestattet. Am Fahrstift drehbarer Flügelgriff mit stellbarer federnder Stütze wie auf Seite 13 abgebildet. Der Fahrstab gestattet eine Winkelöffnung von je 30° nach links und rechts, so dass Flächen von beliebiger Länge und von einer Breite gleich der eingestellten Fahrarmlänge auf einmal mit dem Fahrstift umzogen werden können.

2. Das Präzisions-Scheibenplanimeter.

No.

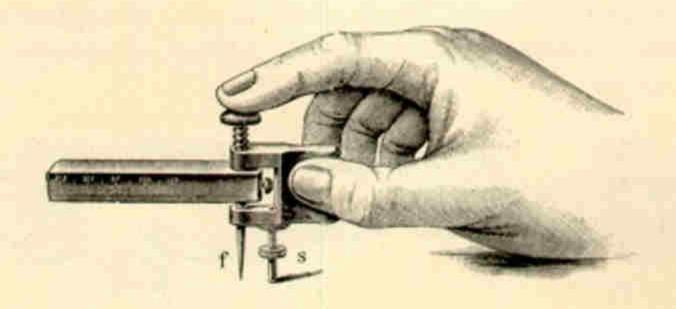
Besondere Vorzüge des Scheibenplanimeters:

Gänzliche Unabhängigkeit der Messrollenbewegunge von der Beschaffenheit des Planes. Es können mit demselben auch auf alten, gefalteten oder gerollten Plänen zuverlässige Flächenberechnungen ausgeführt werden. — Grösste erreichbare Genauigkeit. Bequemes Ablesen. Bequemere Handhabung als alle bisherigen Konstruktionen dieser Art. Grosse Dauerhaftigkeit.

- 33a. Dasselbe wie No. 33 für zwei Masse (z. B. Meter- und Klaftermass)

 Mk. 161.— Fr. 190.—
- 34. Dasselbe mit Bestimmung der Konstanten für Pol innerhalb der Figur
 Mk. 165.— Fr. 195.—
- 34a. Dasselbe wie No. 34 für zwei Masse (z. B. Meter- und Klaftermass)
 Mk. 177.- Fr. 210.-

Das Präzisions-Scheibenplanimeter besteht aus zwei getrennten Teilen: der metallenen Polscheibe P und dem eigentlichen Planimeter. Letzterer wird mit der Scheibe auf einfache Weise in Verbindung gesetzt, indem man das Lager p über die zentrale Kugel der Polscheibe setzt, und den Fahrstift f und Laufrolle L auf dem Plan ruhen lässt. Durch die Bewegung des Fahrstifts um den Pol wird dann das am gezahnten Umfang der Polscheibe stets eingreifende Rädchen r samt der auf dessen Axe sitzenden Scheibe S in Umdrehung versetzt. Die Scheibe S ist aus Aluminium, unten gerippt, oben mit Papier überzogen. Auf der Scheibe ruht die Messrolle aus glashartem Stahl. Teilung und Zählrad wie beim Rollplanimeter. Im Rahmen M der Messrolle ist eine Schraube, um dieselbe von der Scheibe abheben zu können.


Der Rahmen lässt sich zurückschlagen, so dass sich die Scheibe leicht reinigen lässt. An der untern Seite des Rahmens M ist eine Feder angebracht, damit nicht das ganze Gewicht desselben auf der Messrollenaxe ruht; am Fahrstift ein drehbarer Flügelgriff mit Stütze s, welche so gestellt werden kann, dass die Fahrstiftspitze knapp über dem Papier schwebt; die Stütze hält mittelst Feder den Fahrstift in die Höhe, so dass dessen Spitze jederzeit ins Papier gedrückt werden kann, wodurch das Nachfahren und das genaue Einstellen auf den Anfangspunkt sehr erleichtert wird, ohne die Benützung eines Lineals zum Nachfahren zu hindern.

3. Kompensationsplanimeter.

Besondere Vorzüge dieser Polarplanimeter gegenüber anderen Konstruktionen:

- Durch je einmaliges Umfahren einer Parzelle mit Pol links und rechts des Fahrstabs kann der Fehler aus nicht normaler Lage der Messrollenaxe eliminiert werden.
- Das die Drehaxe des Fahrstabs bildende Kugelgelenk kann, vermöge seiner Konstruktion, niemals wackelig werden; man hat nur darauf zu achten, dass die Vertiefung D in der Fahrstabhülse rein bleibt.
- 3. Dadurch, dass das Instrument in zwei getrennten Teilen im Etui aufbewahrt wird, kann die Verbindung von Polarm und Fahrstab nicht durch den Transport gelockert werden.
- 4. Da der Fahrstab eine Winkelbewegung von nahe 180° links und rechts vom Polarm ausführen kann, ohne aus seiner normalen Lage zur Planebene zu geraten, können grössere Flächen umfahren werden, als es bei den früheren Konstruktionen oder mit dem gewöhnlichen Amsler-Planimeter möglich ist, welche höchstens eine Winkelbewegung des Fahrstabs von etwa 90—100° auszunützen gestatten.
- 5. Zur Untersuchung der parallelen Lage der Rollenaxe können so grosse Flächen benützt werden, als sie der Fahrstab überhaupt zu umfahren gestattet, da jede Umfahrung dieser Fläche links und rechts vom Pol das gleiche Resultat liefern muss.
- 6. Die Ablesung an der Rolle ist vollkommen frei von oben und unbeschattet; die Handhabung des Instruments durch den Fortfall des an demselben h\u00e4ngenden Polarms bequemer und weniger gef\u00e4hrlich f\u00fcr dasselbe.
- 7. Der Pol ist so konstruiert, dass er die Vorteile des Gewichtpols und des Nadelpols in sich vereinigt, die Spitze desselben braucht nicht ins Papier gedrückt zu werden; neigt man den Polarm zur Seite, so kann durch Verschieben des Pols die Messrolle rasch und sicher auf "O" eingestellt werden, wenn der Fahrstift am Anfangspunkt der Umfahrung steht.

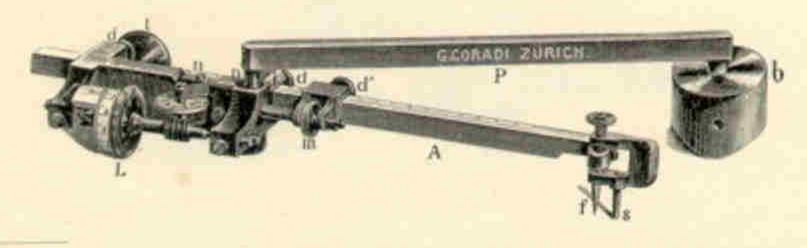
Diese Einrichtung gibt dem Instrument einen vollkommen sichern Stand und gewährt noch den Vorteil, dass der Plan nicht durch Nadelstiche verdorben wird.

8. Neben dem Fahrstift befindet sich ein drehbarer Flügelgriff nebst Stütze, welche so reguliert werden kann, dass die Spitze des Fahrstifts sich knapp über dem Papier befindet, ohne es indessen zu berühren (siehe obige Abbildung). Die Spitze des Fahrstifts kann infolgedessen scharf sein und gestattet, die Umrisse der Zeichnung genau nachzufahren, die Stütze dreht sich um den Fahrstift und verhindert keineswegs den Gebrauch eines Lineals zum Nachfahren. Durch leichten Bruck auf den Knopf des Fahrstifts kann dessen Spitze jederzeit ins Papier gedrückt werden. Dieser Flügelgriff ist bei allen meinen Planimetern angebracht.

9. Mittelst der in 1/2 mm (und mittelst Nonien in 1/20 mm) ausgeführten Einteilung des Fahrstabs lassen sich für solche Massverhältnisse, welche vom Mechaniker nicht angegeben wurden, die Einstellungen leicht finden und in der Tabelle im Etui notieren, ebenso kann die Einteilung benützt werden zur Berücksichtigung des Papiereinganges (Papierschwund).

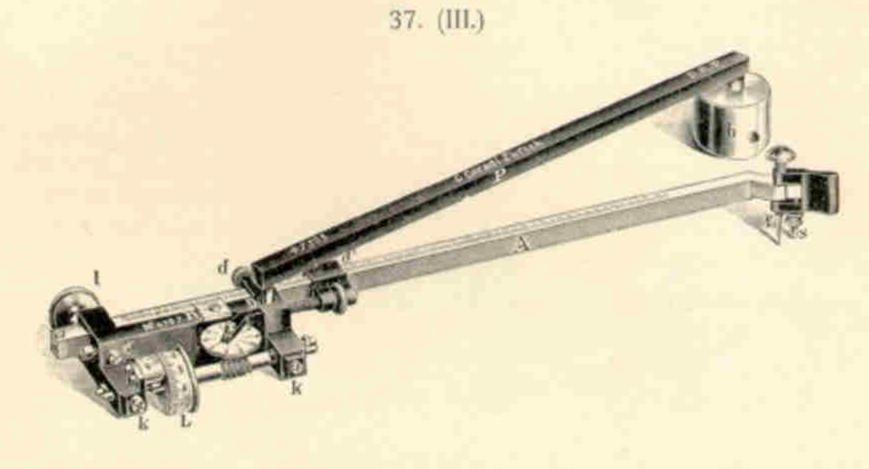
 Diese Planimeter können ins Etui gelegt werden, ohne dass die Pahrstabeinstellung deswegen verändert werden muss.

11. Die Genausgkeit der Instrumente wird garantiert. Jedem Planimeter wird ein Kontrollineal beigegeben, welches mit Nadelzentrum und 4 resp. 3 vertieften, genau 2 cm (oder 1") von einander abstehenden Punkten und Index versehen ist (siehe Abbildung No. 38).


12. Die Rollenteilungen werden auf mattweissem Celluloid genau ausgeführt und sind sehr scharf, so dass auch Unterabteilungen der Noniuseinheit geschätzt werden können.

13. Die Messrolle besteht aus einer solid und fest mit der Axe verbundenen Scheibe aus glashartem Stahl, welcher dem Rosten und der Abnützung viel weniger unterworfen ist, als weicher Stahl.

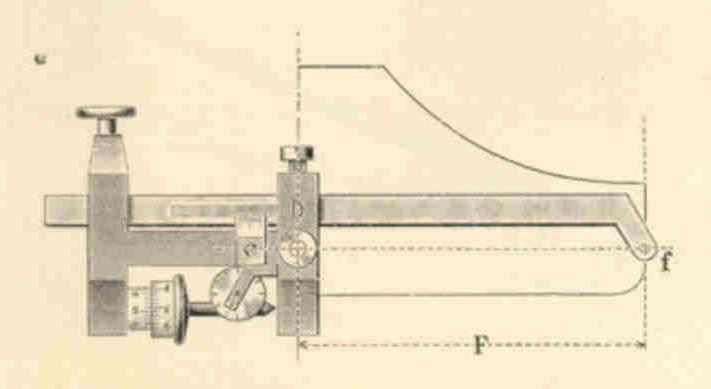
(I.) Kompensations-Planimeter f
ür nur eine Noniuseinheit zwischen 8
 35. (I.)


(II.) Kompensations-Planimeter mit geteiltem, mit Nonius versehenen
 36. (II.)

^{*)} Die in Mark angesetzten Preise für Planimeter (No. 29-37 c) verstehen sich innerhalb Deutschland wohlverpackt franko und zollfrei!

No.

Fahrstab mit Mikrometerwerk, verschiebbar für Werte der Noniuseinheit von 10 bis 2 mm, für 4-6 Noniuseinheiten bezw. Fahrstabeinstellungen justiert. Messrolle und Zählrad wie bei I, Tabelle im Etui, enthaltend die Werte der Noniuseinheit, Fahrstabeinstellungen und Konstanten, Polarm 19 cm lang, bequemer Flügelgriff und Stütze, samt elegantem Etui und Kontrollineal mit 4 resp. 3 Punkten für Radien von 2, 4, 6 und 8 cm oder 1", 2" und 3". Mk. 60.— Fr. 75.—



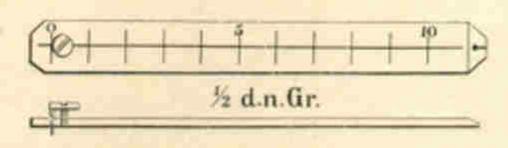
[&]quot;) Im Heft 32, Seite 60, der "Mitteilungen aus der Verwaltung der direkten Steuern", herausgegeben vom kgl. preussischen Finanz-Ministerium heisst es über dieses Planimeter: "Das Instrument dürfte in seiner neuen Konstruktion berufen sein im Laufe der Zeit die seitherigen Polarplanimeter ganz zu verdrängen."

No.

Werden die Planimeter für zwei Masse (Meter und Klafter oder Meter und Zoll) verlangt, so erhöht sich der Preis um Fr. 5.—.

37 c. Die Planimeter No. 36 und 37 können so eingerichtet werden, dass sie direkt die mittlere Höhe von Indikator-Diagrammen abzulesen gestatten. Die Fahrstablänge muss dann gleich der Basislänge des Diagramms eingestellt werden; dies kann entweder mittelst der Teilung auf dem Fahrstab geschehen, dessen Nonius für diesen Zweck so angebracht ist, dass er genau die Länge des Fahrstabs (Abstand des Polarmgelenks von der Fahrstiftspitze) in ½ mm angibt, oder indem man die Fahrstiftspitze auf das eine Ende der Basis einstellt und die Hülse verschiebt bis (bei abgenommenem Polarm) das andere Ende der Basis in der Mitte des kleinen Loches im Kugellager des Pols erscheint (siehe obenstehende Figur). Die Rolle wird genau auf 60 mm Umfang justiert. Das Resultat der Umfahrung mit 0,06 multipliziert, gibt dann die mittlere Höhe des Diagramms in mm.

37 d. Linealplanimeter, besonders geeignet für die beim Schiffbau vorkommenden Flächenberechnungen, bestehend aus einem Wagen, welcher wie ein Polarm mit einem Kompensationsplanimeter No. 35, 36 oder 37 verbunden wird und einem Lineal mit Nute, in welcher der Wagen samt Planimeter bewegt werden kann.


Jedem Planimeter wird eine Anleitung beigegeben.

No. Preis des Wagens mit Verbindungsarm . . . Mk. 32.— Fr. 40.—
Preis des Lineals samt Aufbewahrungskasten für Wagen und Lineal

150 cm lang . . Mk. 50.— Fr. 62.50 200 " " . . Mk. 60.— Fr. 72.—

Geliefert an die Schiffswerften: Gebr. Sachsenberg in Rosslau, Schichau in Elbing, Klawitter in Danzig, Germaniawerft in Kiel u. a.

No. 39

39 a. Präzisions-Kontrollineal für Pol innerhalb und ausserhald. Dasselbe dreht sich um einen durch Spitzen im Papier festgehaltenen Metallzapfen, auf dessen feststehender Scheibe der Nadelpol des Kompensationsplanimeters gestellt wird.
13 cm lang (5") Mk. 12.— Fr. 15.—

20 " " (8") Mk. 15.— Fr. 18.50

C. Integraphen.

System Abdank-Abakanowicz. - Konstruktion Coradi.

Vergleiche: Prof. Dr. E. Hammer, Zeitschrift im Instrumentenkunde, XXIV. Jahrg. 1904, Seite 213 u. f.; Oberleutenant Schatte, Kriegstechnische Zeitschrift, Heft 8 und 9, 1909.

Dottore C. Burali-Forti e Tenente E. Scalfaro

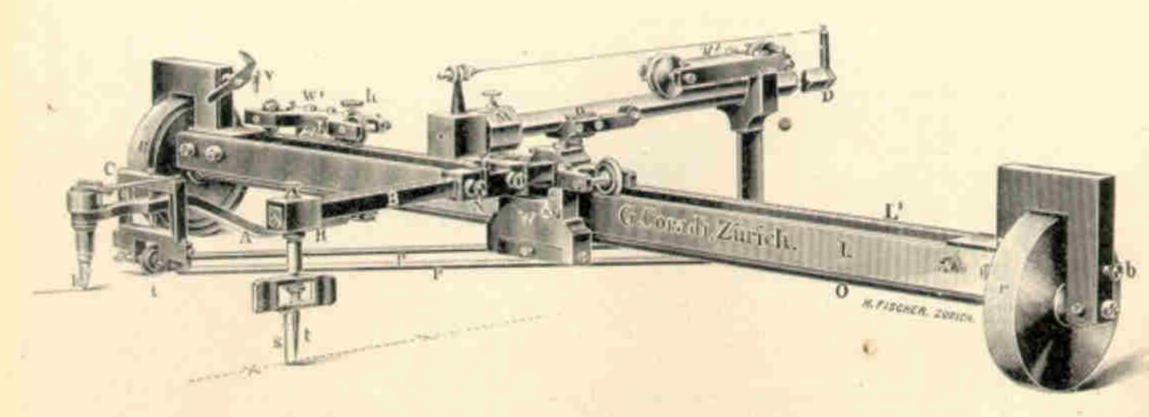
professori, titolare ed aggiunto, di Geometria Analitico-Proiettiva R. Accademia Militare

L'Integrato di Abdank-Abakanowicz.

Descrizione ed Uso Torino Tip. e Lit. Societá Editrice Politecnica 1906.

The Uses of the Integraph in Ship Calculations

by Mr. John G. Johnstone, B. Sc.


Glasgow: William Osher 164 Howard Street - 1904.

On the Application of the Integraph to Some Ship Calculations.

By J. G. Johnstone, Esq. B. Sc., Accociate-Membre.

Read at the Spring Meetings of the Forty-eight Session of the Institut of Naval Architects, in the Chair. March 22, 1907.

Alle aus meinen Werkstätten stammenden Instrumente tragen meine volle Firma "G. Coradi, Zürich".

No.

Der Integraph ist ein Integrator, der nicht nur das Endresultat der Intergration, sondern auch den Verlauf derselben angibt, indem er, während der Fahrstift auf der Grenze einer Figur herumgeführt wird, automatisch eine Kurve (Integralkurve) zeichnet, deren Ordinaten dem Flächeninhalt der umfahrenen Figur proportional sind: y' = fydx. Wird diese erste Integralkurve wieder als Differenzial-Kurve mit dem Fahrstift befahren, so zeichnet der Integraph die zweite Integralkurve, deren Ordinaten proportional sind, dem stätischen Moment: $y'' = fy^2dx$. Befährt man diese zweite Integralkurve mit dem Fahrstift, so zeichnet die Reissfeder des Integraphen die dritte Integralkurve, deren Ordinaten proportional sind, dem Trägheits-Moment: $y''' = fy^3dx$ und so weiter.

Die y-Axe für die Momente kann auf der Figur beliebig gewählt und auf derselben und auf der Integralkurve parallel verschoben werden.

Mit dem Integraphen können viele schwierige und zeitraubende Rechnungen und Probleme der Ingenieurpraxis im Schiffs- und Brückenbau, in Eisenkonstruktionen, Erdtransport, in der Elektrotechnik, in der technischen Optik, in der Ballistik auf einfache, zuverlässige Weise und mit grosser Zeitersparnis gelöst werden, und es kann die Lösung dieser Aufgaben mit Hülfe des Integraphen jemand übertragen werden, der keine Kenntnisse in der höheren Mathematik besitzt.

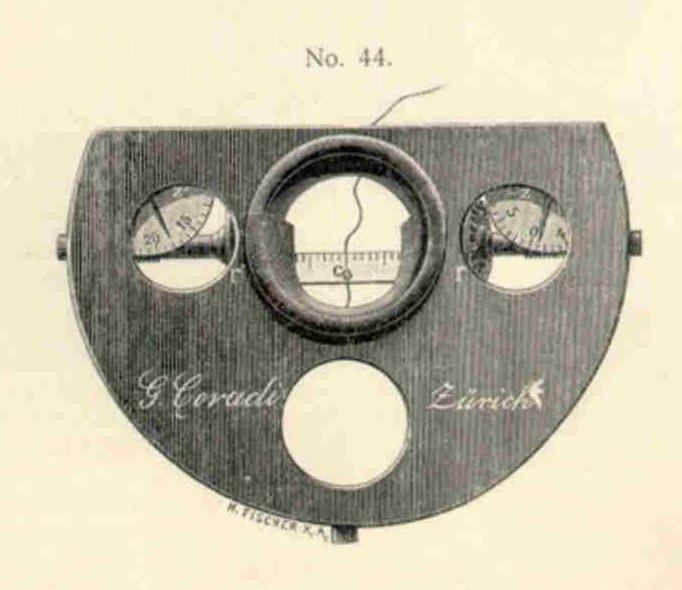
Das Anwendungsgebiet des Integraphen ist sehr gross, es lassen sich mit demselben Flächeninhalte bestimmen, Flächen teilen, Schwerpunkte bestimmen, statische-, Trägheits-, Belastungs- und Widerstands-Momente berechnen, algebraische, numerische Gleichungen auflösen, Parabeln zeichnen etc. Siehe hierüber nach in dem Buche des Erfinders B. Abdank-Abakanowicz: "Die Integralkurve, der Integraph und dessen Anwendungen", deutsch von E. Bitterli, Verlag von B. G. Teubner, Leipzig. Eine von mir herausgegebene Broschüre enthält eine Beschreibung des Integraphen, sowie eine Theorie und eine Anzahl Beispiele der Anwendung desselben von Henry Lossier, Privatdozent in Lausanne (vorläufig in französischer Sprache, welche Interessenten auf Wunsch gratis zugesandt wird.

41. Integraph neuester Konstruktion, grosse Sorte (siehe obenstehende Abbildung). Der ganze Apparat ruht auf 3 Punkten, den beiden an einer Axe O befestigten Walzen rr und dem Fahrstift; er lässt sich in der X-Richtung beliebig lange Strecken in gerader Linie fortbewegen. Der Führungswagen W und der Integrierwagen W¹ haben eine seitliche Bewegung von 52 cm in der y-Richtung. Die Basis (entsprechend dem Fahrstab des Planimeters) kann zwischen 20 cm und 10 cm verändert werden. Das Basislineal B ist mit Teilung in ¹/2 mm und Nonius für ¹/20 mm und mit Mikrometerwerk ver-

No.

sehen. Der Integrierwagen W^1 trägt einen Nonius für $^1/_{10}$ mm, mittelst welchem das Endresultat auf dem in mm geteilten Lineal L^1 analog wie beim Planimeter abgelesen werden kann.

Preis samt Aufbewahrungskasten und aller Zubehör Mk. 480.- Fr. 600.-

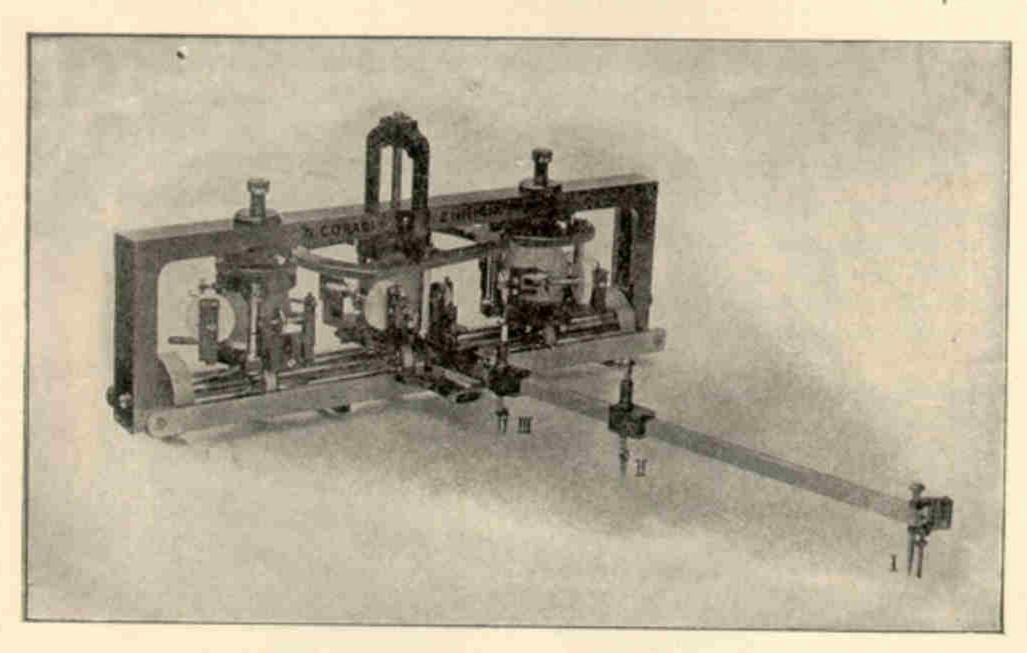

42. Integraph, kleine Sorte. Führungs- und Integrierwagen haben eine seitliche Bewegung von 27 cm; die Basis lässt sich zwischen 12½ und 4 cm verändern. Alles übrige ist gleich wie beim grossen Integraphen.

Preis samt Aufbewahrungskasten Mk. 360 .- Fr. 450 .-

42 a. Einrichtung zur seitlichen Verschiebung des Fahrstifts, um denselben bequem auf die X-Axe einstellen zu können, ohne das ganze Instrument verschieben zu müssen. Am Stift t ist eine Laufrolle angebracht; die Führung erfolgt auch in diesem Fall am Griff des Stifts t und nicht am verschiebbaren Fahrstift.

Preis samt extra Fahrstift mit Federgehäuse . Mk. 44.- Fr. 55.-

44. Linienmesser (Kurvimeter), eigener Konstruktion, zur Messung horizontaler Längen auf Karten und Plänen. Die Axen der beiden Messrollen und der Führungspunkt c liegen in einer Linie und die Ränder der beiden Rollen, mit welchen das Instrumentchen auf dem Plan aufliegt, haben genau gleichen Abstand vom Punkte c. Der Umfang jeder Rolle beträgt 40 mm und ist in 20 Teile geteilt und zweimal von 0—9 beziffert, so dass die Ablesungen


beider Rollen summiert, ganze Millimeter angeben. Beide Rollen sind in gleicher Richtung beziffert, so dass, wenn man das Instrumentchen um den Punkt e dreht, ohne es vorwärts zu bewegen, die Summe beider Abwicklungen = 0 wird; bewegt man das Instrumentchen in gerader Linie fort, so

gibt jede der Rollen die Hälfte des von c durchlaufenen Weges an. Befährt man nun irgend eine Kurve, indem man die Axen der Rollen senkrecht zum jeweiligen Kurvenelement hält (eine Abweichung von der senkrechten um 8° gibt erst eine Differenz von 1/100), so wird die Summe der beiden Ablesungen den vom Punkte c durchlaufenen Weg angeben. An Präzision dürfte dieser Kurvimeter jedem andern überlegen sein. Eigene Versuche ergaben bei geraden Linien eine Genauigkeit von zirka 1/2000.

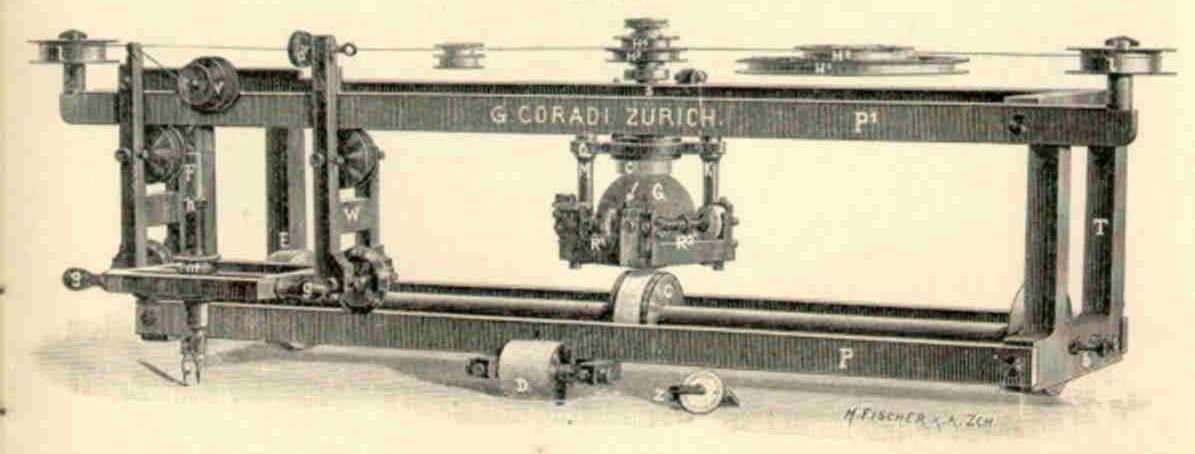
Dasselbe für englisches Mass. Rollenumfang 2" für 1/100 Zoll beziffert
Mk. 33.60 Fr. 42.—

D. Integratoren. Momentenplanimeter.

45. Integrator eigener Konstruktion, nach Prof. H. S. Hele-Shaw in Liverpool.

Das Instrument erhält seine Gradführung durch eine Laufwalze von 35 cm Länge, wie bei meinem Rollplanimeter und lässt sich somit auf dem Plan beliebig weit in gerader Linie fortbewegen. Drei mattgeschliffene Glaskugeln ruhen auf Celluloïd-Zylindern, welche an der Welle der Laufwalze befestigt sind; die Bewegung der Laufwalze wird also auf die Glaskugeln übertragen; diese übertragen ihre Bewegung auf Messrollen, welche im Rahmen der Kugeln, letztere stets berührend, gelagert sind. Diese Rahmen drehen sich um je eine vertikale Axe und sind durch Zahnräder so verbunden, dass wenn der Fahrstab mit der X-Axe den Winkel α einschliesst, die Axe der Flächenrolle (Mitte) dem Fahrstab parallel bleibt, die Axe der Momentenrolle (rechts) den Winkel 90°±2α mit der X-Axe bildet, während die Axe der Trägheitsmomentenrolle (links) den Winkel 3α mit der X-Axe einschliesst. — Durch diese Anordnung ist jedes Gleiten der Messrollen beseitigt.

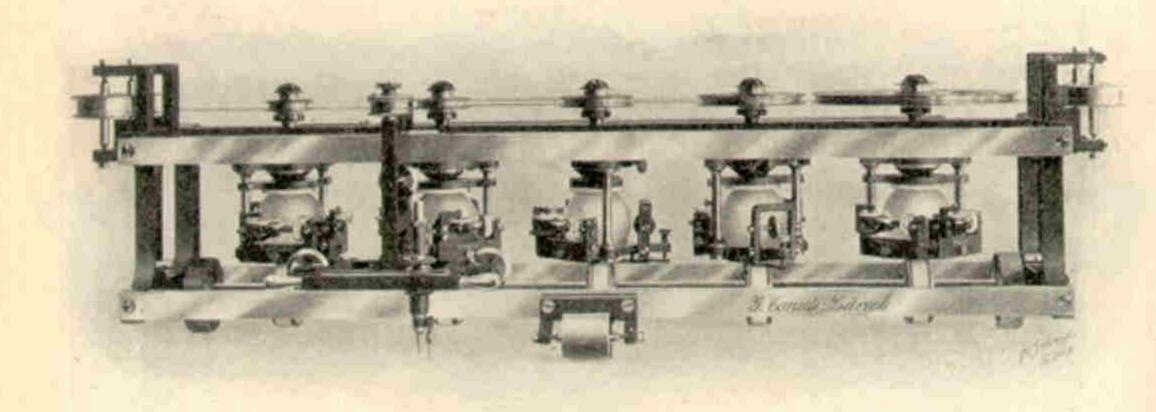
Durch einmaliges Umfahren der Figur erhält man die Fläche, das statische und das Trägheitsmoment der Figur, letztere beide bezogen auf eine beliebig zu wählende Axe. Der Fahrstab besitzt einen fixen Fahrstift im Abstand von 400 mm von der Drehaxe des Fahrstabs, sowie zwei freifallende Fahrstifte im Abstand von 200 und 100 mm. Der Fahrstab gestattet eine Winkelbewegung von zirka 40° links und rechts der X-Axe. Es können also mit dem äussersten Fahrstift Flächen von 50 cm Breite und beliebiger Länge auf einmal umfahren werden. Die Teilkreise der Messrollen von 30 mm Durchmesser sind aus weissem Celluloïd, ebenso die Zählscheiben, welche bis 50 Umdrehungen der Messrollen angeben.


Preis samt Aufbewahrungskasten Mk. 780.- Fr. 975.-

- Das gleiche Instrument wie No. 45, jedoch nur mit einem fixen Fahrstift im Abstand von 200 mm und einem freifallenden Fahrstift im Abstand von 100 mm Mk. 720.— Fr. 900.—
- Dasselbe Instrument wie No. 15, jedoch nur mit 2 Integrierapparaten entweder für Fläche und statisches Moment oder nur für Fläche und Trägheitsmoment Mk. 620. Fr. 775.—

E. Harmonische Analysatoren.

Konstruiert auf Anregung von Herrn Prof. O. Henrici in London.


No. 48.

Diese Instrumente sind bestimmt zur Berechnung der Amplituden und Phasen eindeutig verlaufender Kurven, z. B. Diagramme von Barographen, Thermographen, selbstregistrierenden Pegeln, Kraft-Diagramme von Dynamound Dampfmaschinen etc. etc. Die beiden Messrollen eines Integrierapparates liefern die Koëfficienten A und B der Fourier'schen Reihe, so dass mit Hülfe derselben jede beliebige, eindeutig verlaufende Kurze in eine Sinus- und

- No.
- Kosinus-Kurve verwandelt werden kann. Beschreibung, vorläufig in deutscher Sprache, enthaltend Theorie und Anleitung zur Aufstellung wird auf Wunsch gratis übersandt.
- 49. Analysator mit Basis von 360 oder 400 mm mit drei Integrierapparaten. Doppel-Zählräder bis 400 Umdrehungen angebend. Links und rechts am Rahmen je zwei zwischen Spitzen gehende Laufrollen, damit der Draht für die obern und untern Scheiben möglichst in gerader Linie verlaufend gespannt werden kann; auf jeder Vertikalaxe eine Stufenscheibe mit drei Stufen um die Glieder einer Kurve bis n = 9 durch dreimaliges Befahren derselben bestimmen zu können. Zubehör und Kasten wie No. 48 Mk. 920.— Fr. 1150.—

No. 50.

Bis jetzt wurden solche Analysatoren geliefert an folgende Institute:

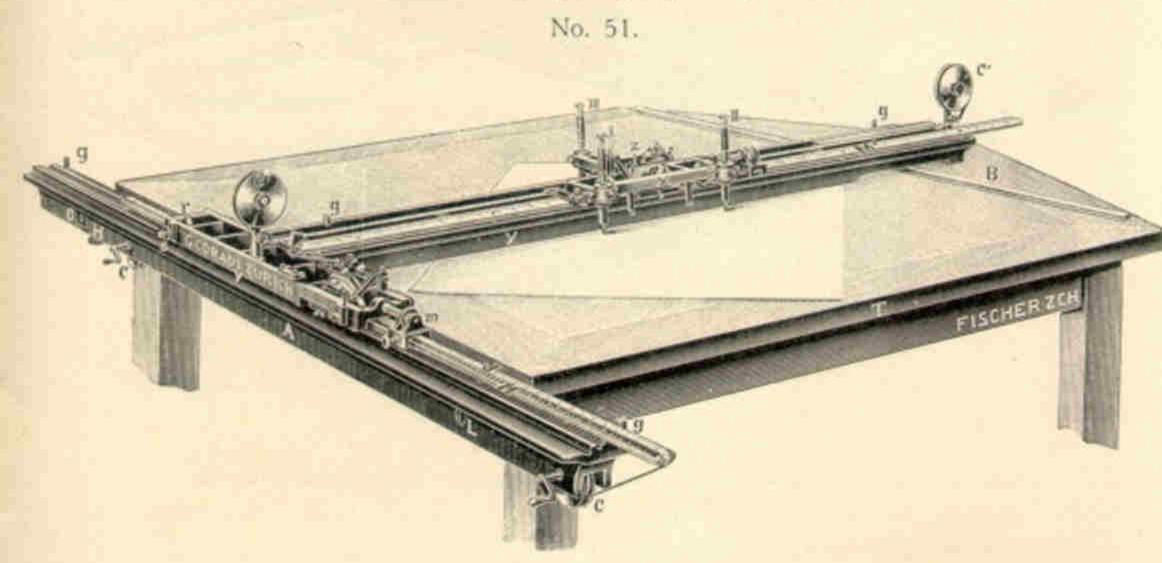
Guilds Central Technical College London (No. 50).

Guilds Technical College Finsbury London (No. 48).

South Kensington Museum London (No. 49).

Kaiserl. Sternwarte Moskau (No. 50).

Physikal. Institut des eidg. Polytechnikums Zürich (No. 49).


Universität Göttingen (No. 48).

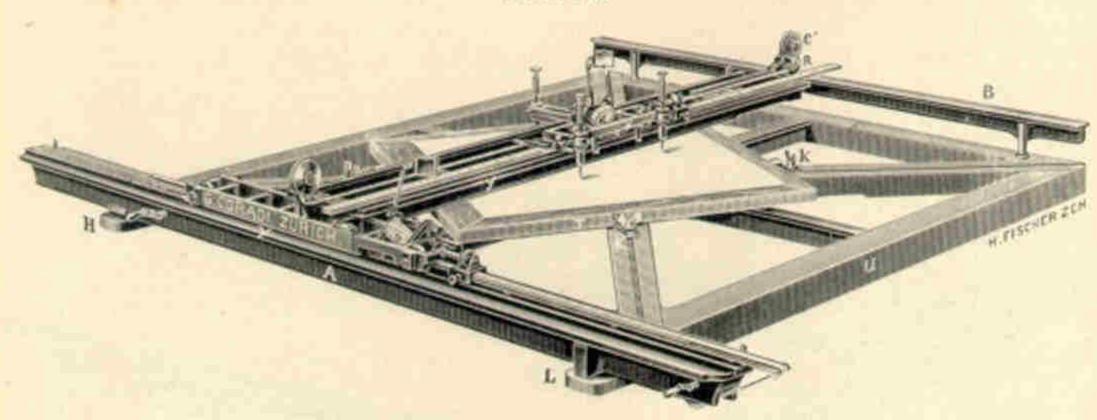
Instituto fisico Rom (No. 49).
Ecole Polytechnique Paris (No. 49).
Elektrotechn. Institut der Techn. Hochschule Stuttgart (No. 50).
Kgl. Sternwarte München (No. 49).
Earthquake Investigation Committee Imp University Tokyo, Japan (No. 49).
Polytechnikum München (No. 49).
Universität Kasan (No. 48).
Universität Kieff (No. 48).
Universität Paris (No. 49).
Munizipal technical College Manchester (No. 50).
Universität Tomsk (No. 49).
Polytechnikum St. Petersburg (No. 50).

F. Koordinatographen.

No. 51. k u. a. m.

51. Koordinatograph zum genauesten Auftragen der Netzpunkte auf Katasterpläne, zum genauesten Ziehen der Netzlinien direkt mit der Reissfeder, parallel oder schräg zur Blattkante, sowie zum Auftragen der innerhalb der Netze liegenden, durch Koordinaten gegebenen Punkte. Beschrieben in "von Schlieben, Hand- und Lehrbuch der gesamten Landmesskunst", Bd. I, Seite 461 u. ff.; Zeitschrift für Instrumentenkunde, Jahrgang 1902, Seite 339 u. ff.

Am Tischblatt T ist das Abscissen-Lineal A von 1,50 m Länge befestigt, in dessen Rinne auf Rollen der Abscissen-Wagen Y ein Meter weit verschoben werden kann. Dieser Wagen ruht mit der walzenförmigen Rolle R als drittem Stützpunkt auf dem lose auf dem Tisch liegenden Lineal B. Der Y-Wagen trägt das Ordinaten-Lineal, in dessen Rinne, genau rechtwinklig zur Bewegung des ersteren, der X-Wagen 0,9 Meter weit sich bewegen lässt. Dieser trägt drei vertikale Punktierstifte I, II und III (wie diejenigen meiner Pantographen), welche durch Feder in ihren Hülsen hoch gehalten werden.


Die Spitzen der Stiften I und II treffen die gleichen Ordinate und haben einen Abstand in der X-Richtung von 200 mm. Die Spitze des Stifts III hat einen Ordinatenabstand von 100 mm von I und II, und einen Abscissenabstand von 200 mm. Zum Apparat gehört eine Reissfeder, welche in die Hülsen der Stifte I, IIemd III genau passend und frei fallend eingesetzt werden kann, so dass deren Schreibebene entweder parallel zu den Ordinaten oder zu den Abscissen steht, ihre Ziehlinie geht genau durch die Netzpunkte, so dass also das Stechen dieser letzteren überflüssig ist. Die beiden Masstäbe tragen Einteilungen für zwei Verhältnisse (1:1000.1:500) oder beliebig anzugebende. Ausserdem trägt jeder Masstab eine genaue Verzahnung, in welche Messrädchen eingreifen, die einen Teilkreis tragen, auf welchem die Unterabteilungen des Meters in siebenfacher Vergrössernng abgelesen werden können, so dass z. B. 1/10 Millimeter wirkliche Verschiebung der Wagen auf den Teilkreisen der Messrädchen in der Grösse von 3/4 mm sichtbar wird. Es können also die Masse auch in der Mitte des Tischblattes ohne Loupe mit grösster Schärfe aufgetragen werden (z. B. im Masstabe 1:1000 noch 1 bis 2 cm) Die Bezifferung ist auf einem besondern Bande angebracht, das an beiden Enden der Masstäbe auf Rollen gewickelt ist. Die Bänder können samt der Bezifferung durch Drehen dieser Rollen so verschoben werden, dass letztere direkt mit den Koordinatenzahlen des betreffenden Blattes übereinstimmt. Mit dem beschriebenen Instrument lassen sich Blätter von 1 m Länge und 66 cm Breite in beliebiger Richtung bearbeiten.")

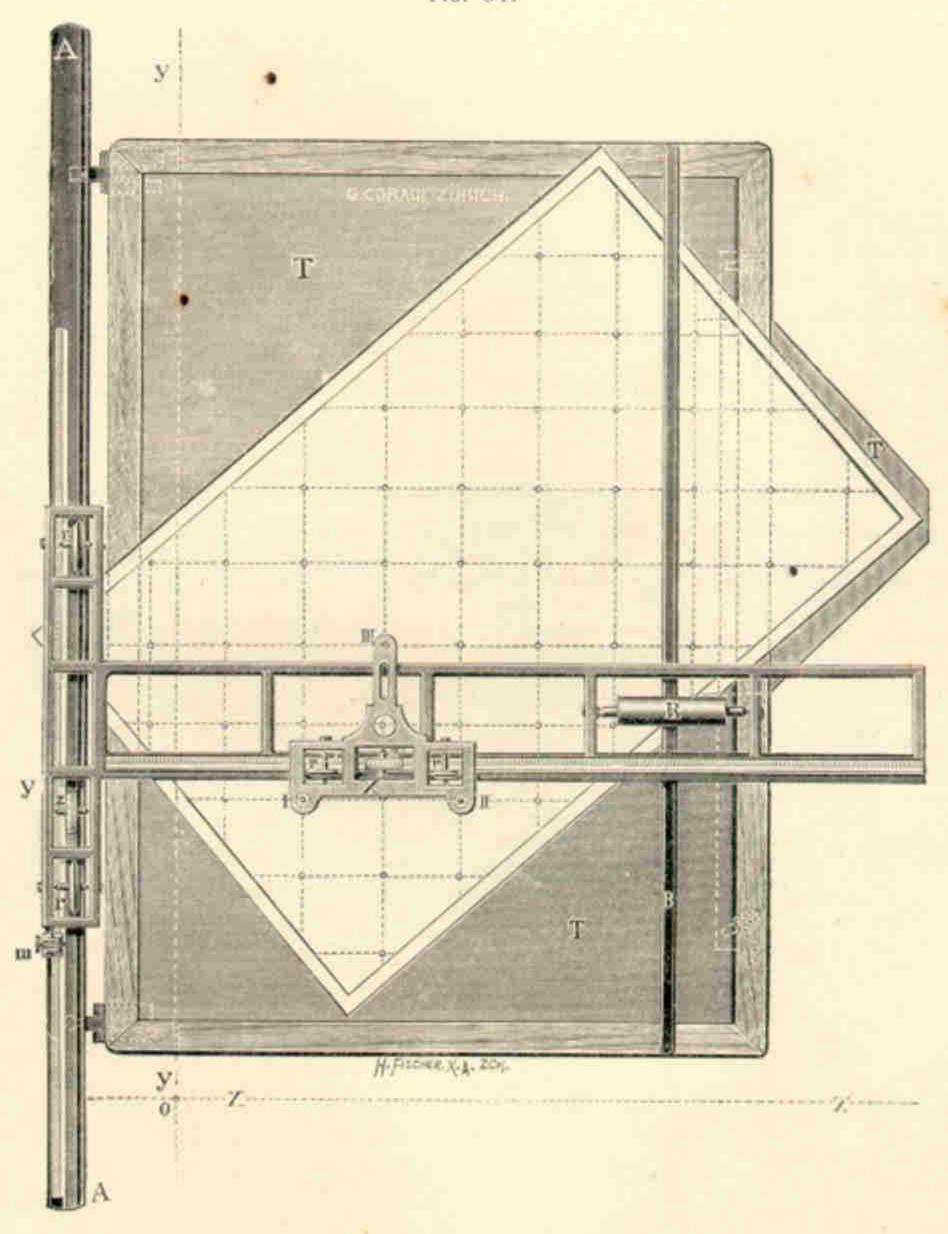
Preis samt Tischblatt ohne Tischgestell . . Mk. 1040 .- Fr. 1300 .-

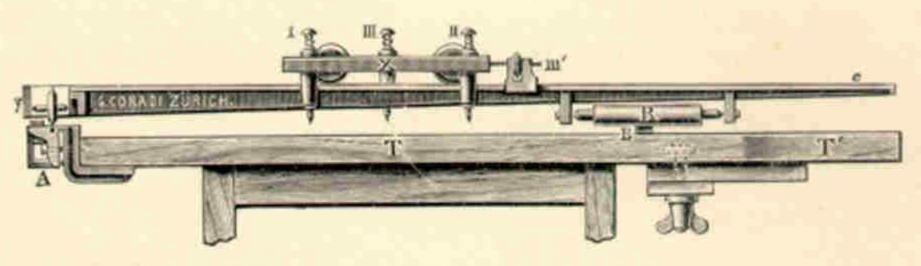
No.

51 a. Koordinatograph wie No. 51

No. 51 a.

Koordinatograph auf eiserner Unterlage montiert, gestattet das Auswechseln der Reissbretter, Messtischblätter, auf welchen sich die Zeichnungen befinden; besonders für tropisches Klima geeignet.

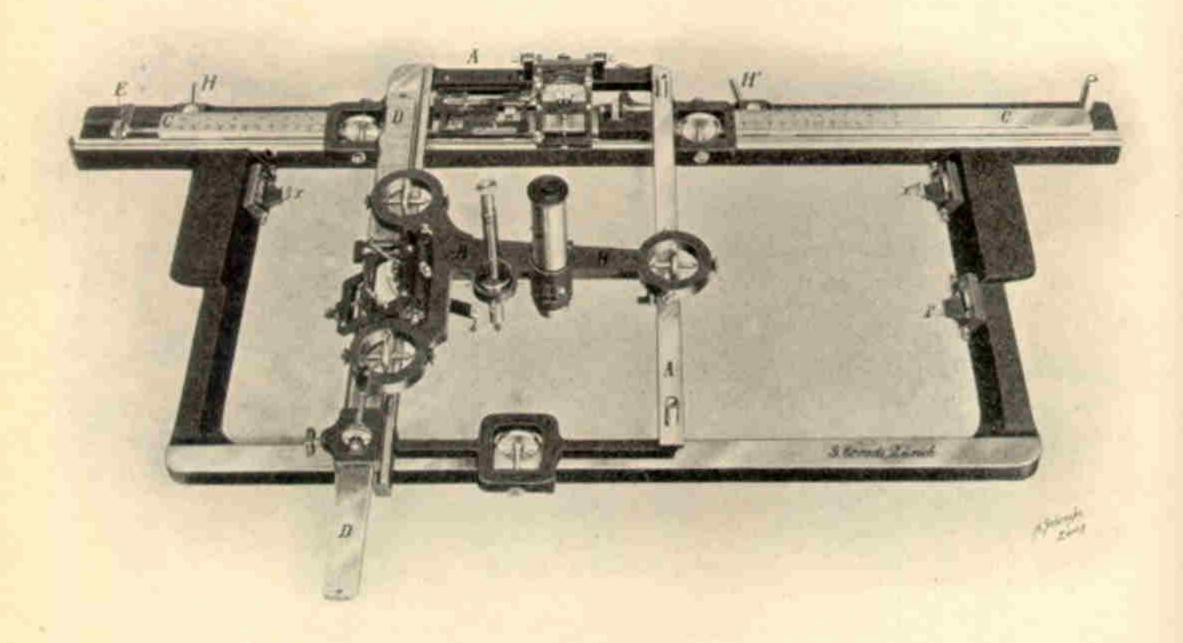

No.


jedoch statt dem Tischblatt ein eiserner Rahmen als Reissbrettunterlage, auf welcher das Basislineal montiert ist Mk. 1320.— Fr. 1650.— 51 b. Koordinatograph wie No. 51 oder 51 a

jedoch mit je zwei verwandten Masstäben, also für 4 Masstäbe

Mehrpreis Mk. 100 .- Fr. 125 .-

^{*)} Ausführliehe Beschreibung und Gutachten mit Abnehmerliste stehen Interessenten gerne franko zur Verfügung.



Detailkoordinatograph und Koordinatometer.*)

No.

52. Dieser Auftragapparat ist auf dem gleichen Prinzip konstruiert wie der grosse Koordinatograph No. 51; er dient zum Auftragen der von den Polygonseiten rechtwinklig aufgemessenen Detailpunkte, sowie auch zum Auftragen von Kurven, deren Abszissen und Ordinaten gegeben sind. Er ist der vollkommenste Auftragapparat der existiert.

Der in obiger Abbildung dargestellte Detailkoordinatograph besitzt folgende Vorzüge vor den bis jetzt gebräuchlichen ähnlichen Apparaten und Vorrichtungen:

- Mit diesem Apparat lässt sich mit weniger Mühe und Zeitaufwand eine viel grössere Genauigkeit erreichen als mit irgend einem andern Apparat oder Vorrichtung oder Auftragsmethode; dies ist besonders wichtig für Stadtvermessungen, wo viele Punkte in einer Aufstellung und mit grosser Genauigkeit aufgetragen werden sollen.
- Das Einstellen des Apparats auf die Messungslinie und den Anfangspunkt derselben kann mit grosser Genauigkeit und ohne Zeitverlust erfolgen,

^{*)} Mit Referenzen stehe gerne zu Diensten.

wobei ein Verderben des Anfangspunktes durch die Punktierspitze ausgeschlossen ist, da das Einstellen auf die Linie und das Einstellen auf den Nullpunkt zwei getrennte Operationen sind, von denen die Letztere mittelst Mikroskop und Mikrometerschraube mit grosser Sicherheit und Raschheit ausgeführt wird.

- 3. Die Masse können auf ein bis zwei Hundertstel Millimeter genau (1 bis 2 cm im Masstab 1/1000) eingestellt und aufgetragen werden ohne dass eine Lupe zu Hilfe genommen werden muss, wie bei Nonien-Ablesung und -Einstellung, bei welchen immer eine Unsicherheit von 1 bis 1/2 Zehntelmillimeter besteht. Durch diese Einrichtung mittelst Messrädchen, welche überall Anerkennung gefunden und sich auf die Dauer vorzüglich bewährt hat, wird nicht nur eine grössere Genauigkeit und Raschheit der Arbeit erzielt, sondern auch eine grosse Schonung der Augen des Zeichners erreicht, was nicht hoch genug geschätzt werden kann. Durch die Messrädchen wird eine etwa zehnmalige Vergrösserung der Teilung erzielt.
- 4. Die Bewegungen der beiden Wagen des Apparates sind so leicht, dass das Arbeiten äusserst angenehm ist. Dieser leichte Gang der Wagen wird sich, da alles auf konischen Rollen in genau geradlinigen Nuten sich bewegt, auf die Dauer beibehalten; der Apparat besitzt genügend Gewicht, damit ein Verschieben desselben während der Arbeit ausgeschlossen ist.

Die Einrichtung der Masstäbe und deren Unterteilung mittelst Messrädchen ist ganz gleich wie bei meinem grossen Koordinatographen; die Masse können mit freiem Auge ohne Lupe bis auf 1 bis 2 Hundertstel Millimeter (1 bis 2 cm im Masstab ½1000) eingestellt werden. Der Apparat wird mittelst der beiden aufklappbaren Indexe i und i' auf die Messungslinie (Polygonseite) eingestellt (orientiert), wobei der Index i' den Anfangspunkt (Nullpunkt der Linie, Messungsnullpunkt) ein wenig verdecken muss, damit man den Index genau auf die Linie einstellen kann. Falls die Linie nicht bis zum Index i reicht, ist der Wagen B auf den in der Mitte des Masstabes D befindlichen Nullpunkt einzustellen, wodurch das Mikroskop und die Spitze der Punktiernadel in Coincidenz mit der die beiden Indexe verbindenden Geraden gebracht wird. Nun kann mittelst des Mikroskopes einerseits und dem Index i' anderseits das Instrument genau auf die Linie eingestellt werden. Bei der neuesten Konstruktion wird der Index i am Wagen A aufklappbar angebracht, so dass mit demselben auf Linien beliebiger Länge eingestellt werden kann.

Der Wagen A wird mittelst des mit "m" (Mikroskop) bezeichneten Index und Mikrometerschraube E' auf Null des verschiebbaren Masstabes C eingestellt.

Mittelst des Mikroskopes wird der Wagen A in seiner Nullstellung samt dem verschiebbaren Masstab C mittelst der Mikrometerschraube E auf den durch Aufklappen des Indexes i' sichtbar gewordenen Messungs-Nullpunkt eingestellt, wodurch der Nullpunkt der Teilung am Masstab C in Coincidenz mit dem Nullpunkt der Messungslinie gebracht worden ist. Es muss also zu diesem Zweck nicht der ganze Apparat verschoben werden, wodurch die Orientierung wieder gestört würde.

No. Durch Verschieben des Knopfes K wird der mit "m" (Mikroskop) bezeichnete Index auf dem Masstab C verdeckt und der Index "sp" (Spitze)
sichtbar. Diese beiden Indexe haben genau den gleichen Abstand von einander
wie die Mikroskopaxe und Punktiernadelspitze; wird nun dieser Index "sp"
durch Verschiebung des Wagens A auf den Teilungsnullpunkt eingestellt, so
wird die Punktiernadelspitze mit dem Messungslinien-Nullpunkt in Coincidenz
gebracht und mit dem Auftragen der Punkte kann nun in üblicher Weise,
rechts und links der Messungslinie, begonnen werden.

Um mit diesem Instrument auf dem ausgeführten Plan für diejenigen Punkte, deren Koordinaten nicht bestimmt sind, die letzteren direkt ablesen zu können, wird das Instrument mit den beiden Indexen X und X^1 auf einer Netzlinie so orientiert, dass der Index X^1 einen Schnittpunkt zweier Netzlinien eben verdeckt.

Um das Mikroskop in Coincidenz mit der Verbindungslinie der beiden Indexe X und X¹ zu bringen, wird der Wagen B auf den am Anfang der Teilung des Masstabes D befindlichen Nullpunkt eingestellt. Die weitere Orientierung der Mikroskopaxe auf den Netzlinien-Schnittpunkt geschieht in gleicher Weise wie bereits angegeben. Nun geben die Ablesungen an den Messrädchen addiert zu (oder subtrahiert von) den Koordinaten der beiden Netzlinien direkt die Koordinaten der mit dem Mikroskop eingestellten Punkte.

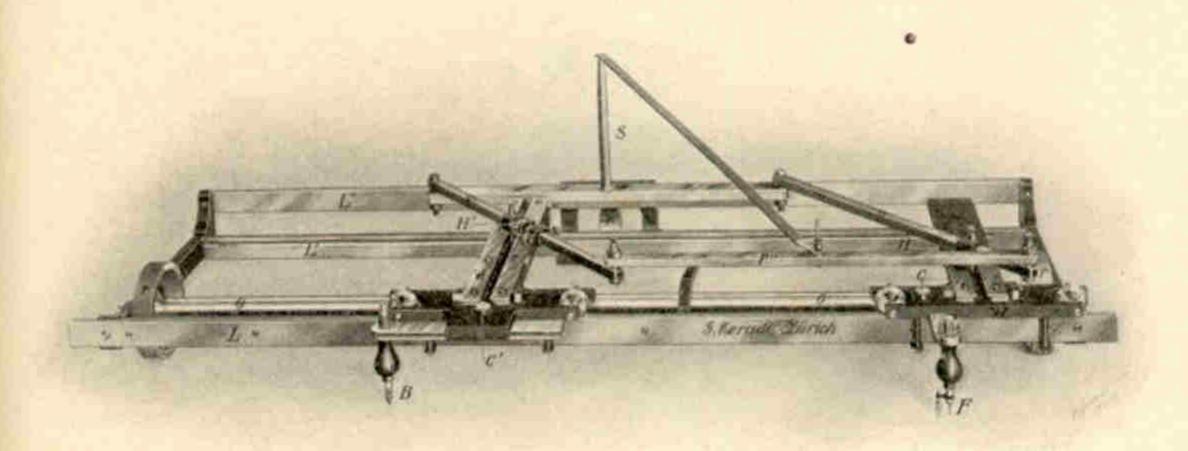
Der Punktierstift soll stets rein gehalten werden, damit er frei falle und von der Feder stets hoch gehalten werde; der Stift darf nicht geölt werden. Falls er von der Feder nicht mehr hoch gehalten wird, ist er mit reinem Seidenpapier sauber abzureiben und auch die Hülse desselben rein auszuwischen, indem man ein Stück Seidenpapier zusammendreht und durch die Hülse zieht.

Die Fläche, welche mit dem Punktierstift des Apparats bearbeitet werden kann, ist 45 cm × 22 cm.

52 a. Detailkoordinatograph wie No. 52, jedoch für 4 Masstäbe eingerichtet.

Mk. 700.— Fr. 875.—

Zu diesem Zweck werden je ein Paar Messrädchen und Masstäbe zum Einhängen und Einsetzen mitgeliefert.


53. Der Apparat kann auch mit Nonienablesung eingerichtet werden, anstatt der Messrädchen, wodurch der Preis sich erheblich niedriger stellt. Doch ist der Vorteil, den die Einrichtung der Messrädchen in Bezug auf Genauigkeit, Raschheit des Arbeitens, Uebersichtlichkeit der Einteilung und Schonung der Augen hat, so gross, dass die bis jetzt gelieferten Apparate stets mit Messrädchen versehen werden mussten.

Preis des Apparats mit Nonienablesung . . . Mk. 380. - Fr. 475. -

54. Koordinatentransformator nach Patent von E. Keller, Basel, konstruiert von O. Coradi. Dieser Apparat ist bestimmt, die Aufgabe der Berechnung der Koordinaten der Grenzpunkte, welche durch Ordinaten auf die Polygonseiten bestimmt sind (Δx und Δy), auf rein mechanischem Wege zu lösen. Es soll der Zeitauswand nur etwa den 3ten bis 4ten Teil dessen betragen, was bei den Stadtvermessungsämtern von Zürich und Basel bei Berechnung mittelst Rechenmaschinen erforderlich ist, bei vorschriftsmässiger Genauigkeit. Die Winkel können bis auf 1 Minute neue Teilung eingestellt und die Längen bis auf 1 cm abgelesen werden. Grösste einstellbare Polygonseite 50 m, grösste einstellbare Ordinate darauf links und rechts 25 m. Sehr bequeme Einrichtung. Preis ist zu erfragen.

Affinograph

nach Prof. C. O. Mailloux, New-York.

No.

55. Dieser in obiger Abbildung dargestellte Apparat ist bestimmt, die Ordinaten von Kurven in bestimmten Verhältnissen beliebig zu verkleinern und zu vergrössern, um z. B. Kurven einer und derselben Gattung, aber von verschiedenen Registrierapparaten herrührend, auf einheitliche Konstantenweite zu bringen, um den Vergleich zu erleichtern. Der Apparat ist zugleich ein Elipsograph; beschreibt der eine Stift einen Kreis, so zeichnet der andere eine Elipse, welche um so gestreckter ist, je mehr die Ordinate verkleinert oder vergrössert wird.

In der x-Richtung ist die Bewegung des Apparats beliebig lang; in der y-Richtung ist der Weg des Führungsstifts im Maximum 33 cm.

Preis Mk. 520.- Fr. 650.-

+ +